Microreactors In Organic Chemistry And Catalysis
Download Microreactors In Organic Chemistry And Catalysis full books in PDF, epub, and Kindle. Read online free Microreactors In Organic Chemistry And Catalysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Thomas Wirth |
Publisher | : John Wiley & Sons |
Total Pages | : 493 |
Release | : 2013-02-22 |
Genre | : Science |
ISBN | : 3527659749 |
For the second edition of 'Microreactors in Organic Chemistry and Catalysis' all chapters have been revised and updated to reflect the latest developments in this rapidly developing field. This new edition has 60% more content, and it remains a comprehensive publication covering most aspects of the topic. The use of microreactors in homogeneous, heterogeneous as well as biphasic reactions is covered in the main part of the book, together with catalytic, bioorganic and automation approaches. The initial chapters also provide a solid physical chemistry background on fluidics in microdevices. Finally, a chapter on industrial applications and developments covers recent progress in process chemistry. An excellent reference for beginners and experts alike.
Author | : Thomas Wirth |
Publisher | : John Wiley & Sons |
Total Pages | : 297 |
Release | : 2008-09-08 |
Genre | : Science |
ISBN | : 3527622861 |
This one-stop reference is the first book on this emerging and rapid developing field with a focus on synthesis and catalysis. As such, it covers all aspects from academia and industry in a clearly structured way. Leading experts provide the background information as an initial aid for newcomers to the field, while chapters on different reaction types and industrial applications make this an equally vital resource for specialists.
Author | : Thomas Wirth |
Publisher | : John Wiley & Sons |
Total Pages | : 308 |
Release | : 2008-05-05 |
Genre | : Science |
ISBN | : 9783527318698 |
This one-stop reference is the first book on this emerging and rapid developing field with a focus on synthesis and catalysis. As such, it covers all aspects from academia and industry in a clearly structured way. Leading experts provide the background information as an initial aid for newcomers to the field, while chapters on different reaction types and industrial applications make this an equally vital resource for specialists. From the contents: - Introduction and background - Fabrication of microractors - Properties and use of microreactors - Organic chemistry in microreactors - Homogeneous reactions (including photochemical and electrochemical reactions) - Heterogeneous reactions - Biphasic reactions (liquid/liquid, liquid/gas) - Bioorganic reactions - Industrial applications Thomas Wirth is Professor of Organic Chemistry at Cardiff University in Wales. After a postdoctoral stay with Kaoru Fuji at Kyoto University as a JSPS fellow, he started his independent research in the group of Bernd Giese in Basel, Switzerland. He was invited as a visiting professor to various places: University of Toronto, Canada (1999), Chuo University in Tokyo, Japan (2000), Osaka University, Japan (2004). He was awarded the Werner-Prize from the New Swiss Chemical Society in 2000. He is the author of about 80 publications and has written or edited 4 books.
Author | : Wolfgang Ehrfeld |
Publisher | : |
Total Pages | : 340 |
Release | : 2000 |
Genre | : Bioreactors |
ISBN | : |
Presents general aspects of microreaction technology. Discusses in detail microfabrication techniques, micromixers, micro heat exchangers, microseparation systems, micosystems for liquid and gas phase reactions, gas/liquid microreactors, and microsystems for energy generation, catalyst, and material screening.
Author | : Jun-ichi Yoshida |
Publisher | : John Wiley & Sons |
Total Pages | : 244 |
Release | : 2008-10-13 |
Genre | : Science |
ISBN | : 0470723416 |
Have you ever wished you could speed up your organic syntheses without losing control of the reaction? Flash Chemistry is a new concept which offers an integrated scheme for fast, controlled organic synthesis. It brings together the generation of highly reactive species and their reactions in Microsystems to enable highly controlled organic syntheses on a preparative scale in timescales of a few seconds or less. Flash Chemistry: Fast Organic Synthesis in microsystems is the first book to describe this exciting new technique, with chapters covering: an introduction to flash chemistry reaction dynamics: how fast is the act of chemical transformation, what is the rate of reaction, and what determines the selectivity of a reaction? examples of why flash chemistry is needed: the rapid construction of chemical libraries, rapid synthesis of radioactive PET probes, and on-demand rapid synthesis in industry the generation of highly reactive species through thermal, microwave, chemical, photochemical, and electrochemical activation microsystems: What are microsystems and how are they made? Why is size so important? What are the characteristic features of microsystems? conduction and control of extremely fast reactions using microsystems applications of flash chemistry in organic synthesis polymer synthesis based on flash chemistry industrial applications of flash chemistry Flash Chemistry: Fast Organic Synthesis in Microsystems is an essential introduction to anyone working in organic synthesis, process chemistry, chemical engineering and physical organic chemistry concerned with fundamental aspects of chemical reactions an d synthesis and the production of organic compounds.
Author | : Christophe Len |
Publisher | : MDPI |
Total Pages | : 158 |
Release | : 2020-04-15 |
Genre | : Science |
ISBN | : 303928732X |
The chemical industry is essential in the daily humn life of modern society; despite the misconception about the real need for chemical production, everyone enjoys the benefit of the chemical progress. However, the chemical industry generates a large variety of products, including (i) basic chemicals, e.g., polymers, petrochemicals, and basic inorganics; (ii) specialty chemicals for crop protection, paints, inks, colorants, textiles, paper, and engineering; and (iii) consumer chemicals, including detergents, soaps, etc. For these reasons, chemists in both acdemia and industry are challenged with developing green and sustainable chemical production towrad the full-recycling of feedstocks and waste. Aiming to improve the intensification of the process, chemists have established chemical reactions based on catalysis, as well as alternative technologies, such as continuous flow. The aim of this book is to cover promising recent research and novel trends in the field of novel catalytic reactions (homogeneous, heterogeneous, and enzymatic, as well as their combinations) in continuous flow conditions. A collection of recent contribution for conversion of starting material originated from petroleum resources or biomass into highly-added value chemicals are reported.
Author | : M. Matlosz |
Publisher | : Springer Science & Business Media |
Total Pages | : 584 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 3642567630 |
IMRET 5 featured more than 80 oral and poster communications, covering the entire interdisciplinary field from design, production, modeling and characterization of microreactor devices to application of microstructured systems for production, energy and transportation, including many analytical and biological applications. A particularly strong topic was the investigation of the potential of microstructuring of reactors and systems components for process intensification. Perspectives of combining local, in situ, data acquisition with appropriate microstructuring of actuators and components within chemical and biological devices were explored in order to enhance process performance and facilitate process control.
Author | : Charlotte Wiles |
Publisher | : CRC Press |
Total Pages | : 453 |
Release | : 2016-04-19 |
Genre | : Science |
ISBN | : 143982472X |
While continuous processes have found widespread application within chemical production, members of the research and development communities have historically favored the centuries old technique of iterative batch reactions. With the exception of combinatorial and microwave chemistry, little had been done to change the way that synthetic chemists c
Author | : Esther Alza |
Publisher | : John Wiley & Sons |
Total Pages | : 372 |
Release | : 2022-06-13 |
Genre | : Science |
ISBN | : 3527824618 |
Learn to master a powerful technology to enable a faster drug discovery workflow The ultimate dream for medicinal chemists is the ability to synthesize new drug-like compounds with the push of a button. The key to synthesizing chemical compounds more quickly and accurately lies in computer-controlled technologies that can be optimized by machine learning. Recent developments in computer-controlled automated syntheses that rely on miniature flow reactors—with integrated analysis of the resulting products—provide a workable technology for synthesizing new chemical substances very quickly and with minimal effort. In Flow and Microreactor Technology in Medicinal Chemistry, early adopters of this ground-breaking technology describe its current and potential uses in medicinal chemistry. Based on successful examples of the use of flow and microreactor synthesis for drug-like compounds, the book introduces current as well as emerging uses for automated synthesis in a drug discovery context. Flow and Microreactor Technology in Medicinal Chemistry readers will also find: Numerous case studies that address the most common applications of this technology in the day-to-day work of medicinal chemists How to integrate flow synthesis with drug discovery How to perform enantioselective reactions under continuous flow conditions Flow and Microreactor Technology in Medicinal Chemistry is a valuable practical reference for medicinal chemists, organic chemists, and natural products chemists, whether they are working in academia or in the pharmaceutical industry.
Author | : Wei Zhang |
Publisher | : John Wiley & Sons |
Total Pages | : 769 |
Release | : 2012-07-23 |
Genre | : Medical |
ISBN | : 0470711515 |
Green chemistry is a new way of looking at organic synthesis and the design of drug molecules, offering important environmental and economic advantages over traditional synthetic processes. Pharmaceutical companies are increasingly turning to the principles of green chemistry in an effort to reduce waste, reduce costs and develop environmentally benign processes. Green Techniques for Organic Synthesis and Medicinal Chemistry presents an overview of the established and emerging techniques in green organic chemistry, highlighting their applications in medicinal chemistry. The book is divided into four parts: Introduction: Introduces the reader to the toxicology of organic chemicals,their environmental impact, and the concept of green chemistry. Green Catalysis: Covers a variety of green catalytic techniques including organocatalysis, supported catalysis, biocatalysis, fluorous catalysis, and catalytic direct C-H bond activation reactions. Green Synthetic Techniques: Presents a series of new techniques, assessing the green chemistry aspects and limitations (i.e. cost, equipment, expertise). Techniques include reactions in alternative solvents, atom economic multicomponent reactions, microwave and ultrasonic reactions, solid-supported synthesis, fluorous and ionic liquid-based recycling techniques, and flow reactors. Green Techniques in Pharmaceutical Industry: Covers applications of green chemistry concepts and special techniques for medicinal chemistry, including synthesis, analysis, separation, formulation, , and drug delivery. Process and business case studies are included to illustrate the applications in the pharmaceutical industry. Green Techniques for Organic Synthesis and Medicinal Chemistry is an essential resource on green chemistry technologies for academic researchers, R&D professionals and students working in organic chemistry and medicinal chemistry.