Microreactor Technology And Process Intensification
Download Microreactor Technology And Process Intensification full books in PDF, epub, and Kindle. Read online free Microreactor Technology And Process Intensification ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Yong Wang |
Publisher | : |
Total Pages | : 468 |
Release | : 2005 |
Genre | : Language Arts & Disciplines |
ISBN | : |
Microreaction technology, with its unprecedented heat and mass transfer advantages as well as uniform residence time and flow pattern, is one of the few technologies with potential to develop efficient, environmentally benign, and compact processes. Novel fabrication and processing techniques, equipment, and operational methods are resulting in spectacular developments that go beyond "traditional" chemical engineering. These new developments promise improvements in process plants, and lead to the transformation of our concept of chemical plants into compact, safe, energy-efficient, and environmentally sustainable processes. Microsystems are now available in many devices for commercial applications including: micromixers and microreactors as alternative to batch production in pharmaceutical and fine chemical industry, lab-on-chip devices, microsensors, advanced rapid throughput chemical and catalyst screening tools (e.g. combi), distributed or portable power and chemical production, distributed heating and cooling, and even out of this world applications with NASA. A wide diversity of subjects are discussed in this book ranging from catalysis to fuel processing to combinatorial techniques to separations to novel reactors all of which are enabled by microtechnology principles. World renowned pioneers (Klavs Jensen, Volker Hessel, Jennifer Holmgren, and Galip Akay) provide accounts on both historical developments and the current state of the art as well as insights into future research and development in microreactor and process intensification. Research and developments are presented by industry, universities, U.S. National Laboratories, and other laboratories located in the United States and throughout the world. It is composed of peer-reviewed chapters from both contributing and invited authors. The review and original research topics include (1) introductory and general overviews, (2) microreactors- including catalysts for microreactors, fuel processors, milli-second contact time catalysis, gas to liquid technology, and biomass conversion; and (3) process intensification such as micro mixers, reactive membranes, and intensification of separation operations.
Author | : David Reay |
Publisher | : Butterworth-Heinemann |
Total Pages | : 624 |
Release | : 2013-06-05 |
Genre | : Technology & Engineering |
ISBN | : 0080983057 |
Process Intensification: Engineering for Efficiency, Sustainability and Flexibility is the first book to provide a practical working guide to understanding process intensification (PI) and developing successful PI solutions and applications in chemical process, civil, environmental, energy, pharmaceutical, biological, and biochemical systems. Process intensification is a chemical and process design approach that leads to substantially smaller, cleaner, safer, and more energy efficient process technology. It improves process flexibility, product quality, speed to market and inherent safety, with a reduced environmental footprint. This book represents a valuable resource for engineers working with leading-edge process technologies, and those involved research and development of chemical, process, environmental, pharmaceutical, and bioscience systems. - No other reference covers both the technology and application of PI, addressing fundamentals, industry applications, and including a development and implementation guide - Covers hot and high growth topics, including emission prevention, sustainable design, and pinch analysis - World-class authors: Colin Ramshaw pioneered PI at ICI and is widely credited as the father of the technology
Author | : |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2018-07-31 |
Genre | : Science |
ISBN | : 9783319266947 |
This Handbook provides researchers, faculty, design engineers in industrial R&D, and practicing engineers in the field concise treatments of advanced and more-recently established topics in thermal science and engineering, with an important emphasis on micro- and nanosystems, not covered in earlier references on applied thermal science, heat transfer or relevant aspects of mechanical/chemical engineering. Major sections address new developments in heat transfer, transport phenomena, single- and multiphase flows with energy transfer, thermal-bioengineering, thermal radiation, combined mode heat transfer, coupled heat and mass transfer, and energy systems. Energy transport at the macro-scale and micro/nano-scales is also included. The internationally recognized team of authors adopt a consistent and systematic approach and writing style, including ample cross reference among topics, offering readers a user-friendly knowledgebase greater than the sum of its parts, perfect for frequent consultation. The Handbook of Thermal Science and Engineering is ideal for academic and professional readers in the traditional and emerging areas of mechanical engineering, chemical engineering, aerospace engineering, bioengineering, electronics fabrication, energy, and manufacturing concerned with the influence thermal phenomena.
Author | : Andrzej Stankiewicz |
Publisher | : John Wiley & Sons |
Total Pages | : 483 |
Release | : 2019-06-13 |
Genre | : Technology & Engineering |
ISBN | : 3527680152 |
This advanced textbook covering the fundamentals and industry applications of process intensification (PI) discusses both the theoretical and conceptual basis of the discipline. Since interdisciplinarity is a key feature of PI, the material contained in the book reaches far beyond the classical area of chemical engineering. Developments in other relevant disciplines, such as chemistry, catalysis, energy technology, applied physics, electronics and materials science, are extensively described and discussed, while maintaining a chemical engineering perspective. Divided into three major parts, the first introduces the PI principles in detail and illustrates them using practical examples. The second part is entirely devoted to fundamental approaches of PI in four domains: spatial, thermodynamic, functional and temporal. The third and final part explores the methodology for applying fundamental PI approaches in practice. As well as detailing technologies, the book focuses on safety, energy and environmental issues, giving guidance on how to incorporate PI in plant design and operation -- safely, efficiently and effectively.
Author | : Melvin V. Koch |
Publisher | : John Wiley & Sons |
Total Pages | : 520 |
Release | : 2007-06-27 |
Genre | : Technology & Engineering |
ISBN | : 3527610618 |
This first comprehensive treatment of the intertwined roles of micro-instrumentation, high throughput experimentation and process intensification as valuable tools for process analytical technology covers both industrial as well as academic aspects. First class editors and authors from top companies and universities provide interdisciplinary coverage ranging from chemistry and analytics to process design and engineering, supported throughout by case studies and ample analytical data.
Author | : M. Matlosz |
Publisher | : Springer Science & Business Media |
Total Pages | : 584 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 3642567630 |
IMRET 5 featured more than 80 oral and poster communications, covering the entire interdisciplinary field from design, production, modeling and characterization of microreactor devices to application of microstructured systems for production, energy and transportation, including many analytical and biological applications. A particularly strong topic was the investigation of the potential of microstructuring of reactors and systems components for process intensification. Perspectives of combining local, in situ, data acquisition with appropriate microstructuring of actuators and components within chemical and biological devices were explored in order to enhance process performance and facilitate process control.
Author | : Kamelia Boodhoo |
Publisher | : John Wiley & Sons |
Total Pages | : 400 |
Release | : 2013-01-03 |
Genre | : Science |
ISBN | : 1118498534 |
The successful implementation of greener chemical processes relies not only on the development of more efficient catalysts for synthetic chemistry but also, and as importantly, on the development of reactor and separation technologies which can deliver enhanced processing performance in a safe, cost-effective and energy efficient manner. Process intensification has emerged as a promising field which can effectively tackle the challenges of significant process enhancement, whilst also offering the potential to diminish the environmental impact presented by the chemical industry. Following an introduction to process intensification and the principles of green chemistry, this book presents a number of intensified technologies which have been researched and developed, including case studies to illustrate their application to green chemical processes. Topics covered include: • Intensified reactor technologies: spinning disc reactors, microreactors, monolith reactors, oscillatory flow reactors, cavitational reactors • Combined reactor/separator systems: membrane reactors, reactive distillation, reactive extraction, reactive absorption • Membrane separations for green chemistry • Industry relevance of process intensification, including economics and environmental impact, opportunities for energy saving, and practical considerations for industrial implementation. Process Intensification for Green Chemistry is a valuable resource for practising engineers and chemists alike who are interested in applying intensified reactor and/or separator systems in a range of industries to achieve green chemistry principles.
Author | : Charlotte Wiles |
Publisher | : CRC Press |
Total Pages | : 453 |
Release | : 2016-04-19 |
Genre | : Science |
ISBN | : 143982472X |
While continuous processes have found widespread application within chemical production, members of the research and development communities have historically favored the centuries old technique of iterative batch reactions. With the exception of combinatorial and microwave chemistry, little had been done to change the way that synthetic chemists c
Author | : Andrzej Stankiewicz |
Publisher | : John Wiley & Sons |
Total Pages | : 360 |
Release | : 2019-09-16 |
Genre | : Technology & Engineering |
ISBN | : 3527327835 |
This advanced textbook covering the fundamentals and industry applications of process intensification (PI) discusses both the theoretical and conceptual basis of the discipline. Since interdisciplinarity is a key feature of PI, the material contained in the book reaches far beyond the classical area of chemical engineering. Developments in other relevant disciplines, such as chemistry, catalysis, energy technology, applied physics, electronics and materials science, are extensively described and discussed, while maintaining a chemical engineering perspective. Divided into three major parts, the first introduces the PI principles in detail and illustrates them using practical examples. The second part is entirely devoted to fundamental approaches of PI in four domains: spatial, thermodynamic, functional and temporal. The third and final part explores the methodology for applying fundamental PI approaches in practice. As well as detailing technologies, the book focuses on safety, energy and environmental issues, giving guidance on how to incorporate PI in plant design and operation -- safely, efficiently and effectively.
Author | : Volker Hessel |
Publisher | : MDPI |
Total Pages | : 250 |
Release | : 2018-10-08 |
Genre | : Technology & Engineering |
ISBN | : 3038420387 |
This book is a printed edition of the Special Issue "Design and Engineering of Microreactor and Smart-Scaled Flow Processes" that was published in Processes