Advances in Microlocal and Time-Frequency Analysis

Advances in Microlocal and Time-Frequency Analysis
Author: Paolo Boggiatto
Publisher: Springer Nature
Total Pages: 533
Release: 2020-03-03
Genre: Mathematics
ISBN: 3030361381

The present volume gathers contributions to the conference Microlocal and Time-Frequency Analysis 2018 (MLTFA18), which was held at Torino University from the 2nd to the 6th of July 2018. The event was organized in honor of Professor Luigi Rodino on the occasion of his 70th birthday. The conference’s focus and the contents of the papers reflect Luigi’s various research interests in the course of his long and extremely prolific career at Torino University.

Time-Frequency Analysis of Operators

Time-Frequency Analysis of Operators
Author: Elena Cordero
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 458
Release: 2020-09-21
Genre: Mathematics
ISBN: 311053245X

This authoritative text studies pseudodifferential and Fourier integral operators in the framework of time-frequency analysis, providing an elementary approach, along with applications to almost diagonalization of such operators and to the sparsity of their Gabor representations. Moreover, Gabor frames and modulation spaces are employed to study dispersive equations such as the Schrödinger, wave, and heat equations and related Strichartz problems. The first part of the book is addressed to non-experts, presenting the basics of time-frequency analysis: short time Fourier transform, Wigner distribution and other representations, function spaces and frames theory, and it can be read independently as a short text-book on this topic from graduate and under-graduate students, or scholars in other disciplines.

Microlocal Analysis for Differential Operators

Microlocal Analysis for Differential Operators
Author: Alain Grigis
Publisher: Cambridge University Press
Total Pages: 164
Release: 1994-03-03
Genre: Mathematics
ISBN: 9780521449861

This book corresponds to a graduate course given many times by the authors, and should prove to be useful to mathematicians and theoretical physicists.

Landscapes of Time-Frequency Analysis

Landscapes of Time-Frequency Analysis
Author: Paolo Boggiatto
Publisher: Springer Nature
Total Pages: 208
Release: 2020-11-21
Genre: Mathematics
ISBN: 3030560058

This contributed volume features chapters based on talks given at the second international conference titled Aspects of Time-Frequency Analysis (ATFA 19), held at Politecnico di Torino from June 25th to June 27th, 2019. Written by experts in harmonic analysis and its applications, these chapters provide a valuable overview of the state-of-the-art of this active area of research. New results are collected as well, making this a valuable resource for readers seeking to be brought up-to-date. Topics covered include: Signal analysis Quantum theory Modulation space theory Applications to the medical industry Wavelet transform theory Anti-Wick operators Landscapes of Time-Frequency Analysis: ATFA 2019 will be of particular interest to researchers and advanced students working in time-frequency analysis and other related areas of harmonic analysis.

Explorations in Time-Frequency Analysis

Explorations in Time-Frequency Analysis
Author: Patrick Flandrin
Publisher: Cambridge University Press
Total Pages: 231
Release: 2018-09-06
Genre: Mathematics
ISBN: 1108421024

Understand the methods of modern non-stationary signal processing with authoritative insights from a leader in the field.

Harmonic, Wavelet and P-Adic Analysis

Harmonic, Wavelet and P-Adic Analysis
Author: N. M. Chuong
Publisher: World Scientific
Total Pages: 393
Release: 2007
Genre: Mathematics
ISBN: 9812770704

The mutual influence between mathematics and science and technology is becoming more and more widespread with profound connections among them being discovered. In particular, important connections between harmonic analysis, wavelet analysis and p-adic analysis have been found recently. This volume reports these findings and guides the reader towards the latest areas for further research. It is divided into two parts: harmonic, wavelet and p-adic analysis and p-adic and stochastic analysis.

A Guide to Distribution Theory and Fourier Transforms

A Guide to Distribution Theory and Fourier Transforms
Author: Robert S. Strichartz
Publisher: World Scientific
Total Pages: 238
Release: 2003
Genre: Mathematics
ISBN: 9789812384300

This important book provides a concise exposition of the basic ideas of the theory of distribution and Fourier transforms and its application to partial differential equations. The author clearly presents the ideas, precise statements of theorems, and explanations of ideas behind the proofs. Methods in which techniques are used in applications are illustrated, and many problems are included. The book also introduces several significant recent topics, including pseudodifferential operators, wave front sets, wavelets, and quasicrystals. Background mathematical prerequisites have been kept to a minimum, with only a knowledge of multidimensional calculus and basic complex variables needed to fully understand the concepts in the book.A Guide to Distribution Theory and Fourier Transforms can serve as a textbook for parts of a course on Applied Analysis or Methods of Mathematical Physics, and in fact it is used that way at Cornell.

Handbook of Mathematical Methods in Imaging

Handbook of Mathematical Methods in Imaging
Author: Otmar Scherzer
Publisher: Springer Science & Business Media
Total Pages: 1626
Release: 2010-11-23
Genre: Mathematics
ISBN: 0387929193

The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.

Excursions in Harmonic Analysis, Volume 6

Excursions in Harmonic Analysis, Volume 6
Author: Matthew Hirn
Publisher: Springer Nature
Total Pages: 444
Release: 2021-09-01
Genre: Mathematics
ISBN: 3030696375

John J. Benedetto has had a profound influence not only on the direction of harmonic analysis and its applications, but also on the entire community of people involved in the field. The chapters in this volume – compiled on the occasion of his 80th birthday – are written by leading researchers in the field and pay tribute to John’s many significant and lasting achievements. Covering a wide range of topics in harmonic analysis and related areas, these chapters are organized into four main parts: harmonic analysis, wavelets and frames, sampling and signal processing, and compressed sensing and optimization. An introductory chapter also provides a brief overview of John’s life and mathematical career. This volume will be an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, engineering, and physics.

The Localization Problem in Index Theory of Elliptic Operators

The Localization Problem in Index Theory of Elliptic Operators
Author: Vladimir Nazaikinskii
Publisher: Springer Science & Business Media
Total Pages: 122
Release: 2013-11-26
Genre: Mathematics
ISBN: 3034805101

The book deals with the localization approach to the index problem for elliptic operators. Localization ideas have been widely used for solving various specific index problems for a long time, but the fact that there is actually a fundamental localization principle underlying all these solutions has mostly passed unnoticed. The ignorance of this general principle has often necessitated using various artificial tricks and hindered the solution of new important problems in index theory. So far, the localization principle has been only scarcely covered in journal papers and not covered at all in monographs. The suggested book is intended to fill the gap. So far, it is the first and only monograph dealing with the topic. Both the general localization principle and its applications to specific problems, existing and new, are covered. The book will be of interest to working mathematicians as well as graduate and postgraduate university students specializing in differential equations and related topics.​