Proceedings

Proceedings
Author:
Publisher:
Total Pages: 342
Release: 1996
Genre: Geothermal engineering
ISBN:

Microearthquake Source Mechanism Studies at the Geysers Geothermal Field

Microearthquake Source Mechanism Studies at the Geysers Geothermal Field
Author:
Publisher:
Total Pages: 16
Release: 1996
Genre:
ISBN:

In this paper the authors discuss moment tensors obtained from inversion of MEQ waveform data recorded at the Southeast (SE) and Northwest (NW) Geysers geothermal areas by the high-resolution seismic networks operated by Lawrence Berkeley National Laboratory (Berkeley Lab) and the Coldwater Creek Geothermal Company (now CCPA). The network in the SE Geysers consists of 13 high-frequency (4.5 Hz), digital (480 samples), three-component, telemetered stations deployed on the surface in portions of the Calpine, Unocal-NEC-Thermal (U-N-T), and Northern California Power Agency (NCPA) leases. The network in the NW Geysers is a 16-station borehole array of three-component geophones (4.5 Hz), digital at 400 samples/sec, and telemetered to a central site. One of the main objectives of Berkeley Lab's program at the Geysers is to assess the utility of MEQ monitoring as a reservoir management tool. Discrimination of the mechanisms of these events may aid in the interpretation of MEQ occurrence patterns and their significance to reservoir processes and conditions of interest to reservoir managers. Better understanding of the types of failure deduced from source mechanism studies, and their relations to production parameters, should also lead to a better understanding of the effects of injection and withdrawal.

Applied Geophysics with Case Studies on Environmental, Exploration and Engineering Geophysics

Applied Geophysics with Case Studies on Environmental, Exploration and Engineering Geophysics
Author: Ali Ismet Kanlı
Publisher: BoD – Books on Demand
Total Pages: 152
Release: 2019-06-05
Genre: Science
ISBN: 1838807403

This book provides a general introduction to the most important methods of applied geophysics with a variety of case studies. These methods represent a primary tool for investigation of the subsurface and are applicable to a very wide range of problems. Applied geophysics is based on physics principles that collect and interpret data on subsurface conditions for practical purposes, including oil and gas exploration, mineral prospecting, geothermal exploration, groundwater exploration, engineering applications, archeological interests, and environmental concerns. The depth of investigation into applied geophysics is shallow, typically from the ground surface to several kilometers deep, where economic, cultural, engineering, or environmental concerns often arise. Applied geophysics uses almost all of the current geophysical methods, including electrical, magnetic, electromagnetic, gravimetric, geothermal, seismic, seismoelectric, magnetotelluric, nuclear, and radioactive methods. In applied geophysics, geophysicists are usually required to have a good understanding of math and physics principles, knowledge of geology and computer skills, and hands-on experience of electronic instruments. A geophysicist's routine job includes survey designs, data acquisition, data processing, and data interpretation with detailed explanation of the study. Applied geophysics consists of three main subject and interest areas, which are exploration geophysics, engineering geophysics, and environmental geophysics.