Microbial Fuel Cell Technology for Bioelectricity

Microbial Fuel Cell Technology for Bioelectricity
Author: Venkataraman Sivasankar
Publisher: Springer
Total Pages: 320
Release: 2018-08-02
Genre: Technology & Engineering
ISBN: 3319929046

In view of the increased consumption of energy due to the proliferation of electronic devices, this book addresses the trends, similarities, differences and advances in fuel cells of both chemical and biological composition. Fundamentals of microbial fuel cells are described, accompanied by details surrounding their uses and limitations. Chapters on electricigens, microbial group investigations and performance, Rumen Fluid microbes and state-of-the-art advances in microbial fuel cell technology are discussed. The book elaborates upon analytical techniques used for biofilm characterization. It also includes chapters on MFC models that include plant-based MFCs, Algal/Fungi MFCs, MDCs and MFCs using animal waste. A critical review on the performance of MFC technology in field trials is offered in an exclusively dedicated section. By addressing one of the most promising sources for clean and renewable energy, this book fills a pressing need to understand a possible solution for meeting the energy demands in our highly advanced technical world.

Integrated Microbial Fuel Cells for Wastewater Treatment

Integrated Microbial Fuel Cells for Wastewater Treatment
Author: Rouzbeh Abbassi
Publisher: Butterworth-Heinemann
Total Pages: 390
Release: 2020-04-27
Genre: Business & Economics
ISBN: 0128174935

Current wastewater treatment technologies are not sustainable simply due to their high operational costs and process inefficiency. Integrated Microbial Fuel Cells for Wastewater Treatment is intended for professionals who are searching for an innovative method to improve the efficiencies of wastewater treatment processes by exploiting the potential of Microbial Fuel Cells (MFCs) technology. The book is broadly divided into four sections. It begins with an overview of the "state of the art" bioelectrochemical systems (BESs) as well as the fundamentals of MFC technology and its potential to enhance wastewater treatment efficiencies and reduce electricity generation cost. In section two, discusses the integration, installation, and optimization of MFC into conventional wastewater treatment processes such as activated sludge process, lagoons, constructed wetlands, and membrane bioreactors. Section three outlines integrations of MFCs into other wastewater processes. The final section provides explorative studies of MFC integrated systems for large scale wastewater treatment and the challenges which are inherent in the upscaling process. Clearly describes the latest techniques for integrating MFC into traditional wastewater treatment processes such as activated sludge process, lagoons, constructed wetlands, and membrane bioreactors Discusses the fundamentals of bioelectrochemical systems for degrading the contaminants from the municipal and industrial wastewater Covers methods for the optimization of integrated systems

Microbial Fuel Cell

Microbial Fuel Cell
Author: Debabrata Das
Publisher: Springer
Total Pages: 508
Release: 2017-12-01
Genre: Technology & Engineering
ISBN: 3319667939

This book represents a novel attempt to describe microbial fuel cells (MFCs) as a renewable energy source derived from organic wastes. Bioelectricity is usually produced through MFCs in oxygen-deficient environments, where a series of microorganisms convert the complex wastes into electrons via liquefaction through a cascade of enzymes in a bioelectrochemical process. The book provides a detailed description of MFC technologies and their applications, along with the theories underlying the electron transfer mechanisms, the biochemistry and the microbiology involved, and the material characteristics of the anode, cathode and separator. It is intended for a broad audience, mainly undergraduates, postgraduates, energy researchers, scientists working in industry and at research organizations, energy specialists, policymakers, and anyone else interested in the latest developments concerning MFCs.

Microbial Fuel Cells

Microbial Fuel Cells
Author: Bruce E. Logan
Publisher: John Wiley & Sons
Total Pages: 214
Release: 2008-02-08
Genre: Technology & Engineering
ISBN: 0470258586

The theory, design, construction, and operation of microbial fuel cells Microbial fuel cells (MFCs), devices in which bacteria create electrical power by oxidizing simple compounds such as glucose or complex organic matter in wastewater, represent a new and promising approach for generating power. Not only do MFCs clean wastewater, but they also convert organics in these wastewaters into usable energy. Given the world's limited supply of fossil fuels and fossil fuels' impact on climate change, MFC technology's ability to create renewable, carbon-neutral energy has generated tremendous interest around the world. This timely book is the first dedicated to MFCs. It not only serves as an introduction to the theory underlying the development and functioning of MFCs, it also serves as a manual for ongoing research. In addition, author Bruce Logan, a leading pioneer in MFC research and development, provides practical guidance for the effective design and operation of MFCs based on his own firsthand experience. This reference covers everything you need to fully understand MFCs, including: * Key topics such as voltage and power generation, MFC materials and architecture, mass transfer to bacteria and biofilms, bioreactor design, and fundamentals of electron transfer * Applications across a wide variety of scales, from power generation in the laboratory to approaches for using MFCs for wastewater treatment * The role of MFCs in the climate change debate * Detailed illustrations of bacterial and electrochemical concepts * Charts, graphs, and tables summarizing key design and operation variables * Practice problems and step-by-step examples Microbial Fuel Cells, with its easy-to-follow explanations, is recommended as both a textbook for students and professionals interested in entering the field and as a complete reference for more experienced practitioners.

Progress and Recent Trends in Microbial Fuel Cells

Progress and Recent Trends in Microbial Fuel Cells
Author: Patit Paban Kundu
Publisher: Elsevier
Total Pages: 482
Release: 2018-06-07
Genre: Technology & Engineering
ISBN: 0444640185

Progress and Recent Trends in Microbial Fuel Cells provides an in-depth analysis of the fundamentals, working principles, applications and advancements (including commercialization aspects) made in the field of Microbial Fuel Cells research, with critical analyses and opinions from experts around the world. Microbial Fuel cell, as a potential alternative energy harnessing device, has been progressing steadily towards fruitful commercialization. Involvements of electrolyte membranes and catalysts have been two of the most critical factors toward achieving this progress. Added applications of MFCs in areas of bio-hydrogen production and wastewater treatment have made this technology extremely attractive and important. . - Reviews and compares MFCs with other alternative energy harnessing devices, particularly in comparison to other fuel cells - Analyses developments of electrolyte membranes, electrodes, catalysts and biocatalysts as critical components of MFCs, responsible for their present and future progress - Includes commercial aspects of MFCs in terms of (i) generation of electricity, (ii) microbial electrolysis cell, (iii) microbial desalination cell, and (iv) wastewater and sludge treatment

Bioelectrochemical Systems

Bioelectrochemical Systems
Author: Korneel Rabaey
Publisher: IWA Publishing
Total Pages: 525
Release: 2009-12-01
Genre: Science
ISBN: 184339233X

In the context of wastewater treatment, Bioelectrochemical Systems (BESs) have gained considerable interest in the past few years, and several BES processes are on the brink of application to this area. This book, written by a large number of world experts in the different sub-topics, describes the different aspects and processes relevant to their development. Bioelectrochemical Systems (BESs) use micro-organisms to catalyze an oxidation and/or reduction reaction at an anodic and cathodic electrode respectively. Briefly, at an anode oxidation of organic and inorganic electron donors can occur. Prime examples of such electron donors are waste organics and sulfides. At the cathode, an electron acceptor such as oxygen or nitrate can be reduced. The anode and the cathode are connected through an electrical circuit. If electrical power is harvested from this circuit, the system is called a Microbial Fuel Cell; if electrical power is invested, the system is called a Microbial Electrolysis Cell. The overall framework of bio-energy and bio-fuels is discussed. A number of chapters discuss the basics – microbiology, microbial ecology, electrochemistry, technology and materials development. The book continues by highlighting the plurality of processes based on BES technology already in existence, going from wastewater based reactors to sediment based bio-batteries. The integration of BESs into existing water or process lines is discussed. Finally, an outlook is provided of how BES will fit within the emerging biorefinery area.

Enzymatic Fuel Cells

Enzymatic Fuel Cells
Author: Heather R. Luckarift
Publisher: John Wiley & Sons
Total Pages: 540
Release: 2014-05-06
Genre: Technology & Engineering
ISBN: 1118869737

Summarizes research encompassing all of the aspects required to understand, fabricate and integrate enzymatic fuel cells Contributions span the fields of bio-electrochemistry and biological fuel cell research Teaches the reader to optimize fuel cell performance to achieve long-term operation and realize commercial applicability Introduces the reader to the scientific aspects of bioelectrochemistry including electrical wiring of enzymes and charge transfer in enzyme fuel cell electrodes Covers unique engineering problems of enzyme fuel cells such as design and optimization

Microbial Applications Vol.1

Microbial Applications Vol.1
Author: Vipin Chandra Kalia
Publisher: Springer
Total Pages: 335
Release: 2017-04-04
Genre: Science
ISBN: 3319526669

This contributed volume sheds new light on waste management and the production of biofuels. The authors share insights into microbial applications to meet the challenges of environmental pollution and the ever- growing need for renewable energy. They also explain how healthy and balanced ecosystems can be created and maintained using strategies ranging from oil biodegration and detoxification of azo dyes to biofouling. In addition, the book illustrates how the metabolic abilities of microorganisms can be used in microbial fuel-cell technologies or for the production of biohydrogen. It inspires young researchers and experienced scientists in the field of microbiology to explore the application of green biotechnology for bioremediation and the production of energy, which will be one of the central topics for future generations.

Biofuel Cells

Biofuel Cells
Author: Inamuddin
Publisher: John Wiley & Sons
Total Pages: 530
Release: 2021-08-03
Genre: Science
ISBN: 1119724694

Rapid industrialization and urbanization associated with the environment changes calls for reduced pollution and thereby least use of fossil fuels. Biofuel cells are bioenergy resources and biocompatible alternatives to conventional fuel cells. Biofuel cells are one of the new sustainable renewable energy sources that are based on the direct conversion of chemical matters to electricity with the aid of microorganisms or enzymes as biocatalysts. The gradual depletion of fossil fuels, increasing energy needs, and the pressing problem of environmental pollution have stimulated a wide range of research and development efforts for renewable and environmentally friendly energy. Energy generation from biomass resources by employing biofuel cells is crucial for sustainable development. Biofuel cells have attracted considerable attention as micro- or even nano-power sources for implantable biomedical devices, such as cardiac pacemakers, implantable self-powered sensors, and biosensors for monitoring physiological parameters. This book covers the most recent developments and offers a detailed overview of fundamentals, principles, mechanisms, properties, optimizing parameters, analytical characterization tools, various types of biofuel cells, all-category of materials, catalysts, engineering architectures, implantable biofuel cells, applications and novel innovations and challenges in this sector. This book is a reference guide for anyone working in the areas of energy and the environment.

Microbial Cell Factories Engineering for Production of Biomolecules

Microbial Cell Factories Engineering for Production of Biomolecules
Author: Vijai Singh
Publisher: Academic Press
Total Pages: 490
Release: 2021-02-13
Genre: Science
ISBN: 0128214783

Microbial Cell Factories Engineering for Production of Biomolecules presents a compilation of chapters written by eminent scientists worldwide. Sections cover major tools and technologies for DNA synthesis, design of biosynthetic pathways, synthetic biology tools, biosensors, cell-free systems, computer-aided design, OMICS tools, CRISPR/Cas systems, and many more. Although it is not easy to find relevant information collated in a single volume, the book covers the production of a wide range of biomolecules from several MCFs, including Escherichia coli, Bacillus subtilis, Pseudomonas putida, Streptomyces, Corynebacterium, Cyanobacteria, Saccharomyces cerevisiae, Pichia pastoris and Yarrowia lipolytica, and algae, among many others. This will be an excellent platform from which scientific knowledge can grow and widen in MCF engineering research for the production of biomolecules. Needless to say, the book is a valuable source of information not only for researchers designing cell factories, but also for students, metabolic engineers, synthetic biologists, genome engineers, industrialists, stakeholders and policymakers interested in harnessing the potential of MCFs in several fields. - Offers basic understanding and a clear picture of various MCFs - Explains several tools and technologies, including DNA synthesis, synthetic biology tools, genome editing, biosensors, computer-aided design, and OMICS tools, among others - Harnesses the potential of engineered MCFs to produce a wide range of biomolecules for industrial, therapeutic, pharmaceutical, nutraceutical and biotechnological applications - Highlights the advances, challenges, and future opportunities in designing MCFs