Agriculturally Important Microbes for Sustainable Agriculture

Agriculturally Important Microbes for Sustainable Agriculture
Author: Vijay Singh Meena
Publisher: Springer
Total Pages: 374
Release: 2017-10-03
Genre: Technology & Engineering
ISBN: 9789811053429

This book is a compilation of case studies from different countries and covers contemporary with future prospective for sustainable development of agriculture. The book highlights the real-world as well as future generation situations facing the challenges for the twenty first century will be production of sufficient food and highlights the strengths, weaknesses and opportunities, to meet the needs of fast growing population it is imperative to increase agricultural productivity in an environmentally sustainable manner. Due to imbalanced use of chemical fertilizers and agrochemicals has a considerable negative impact on economy and environmental sustainability of nation, for the sustainable alternative means to solve these problems, the efficient utilization of biological agents have been extensively studied. Naturally existing plant-microbe-environment interactions are utilized in many ways for enhancing plant productivity. A greater understanding of how plants and microbes live together and benefit each other can therefore provide new strategies to improve plant productivity, in most sustainable way. To achieve the objective of sustainable agricultural practices there is a need for understanding both basic and applied aspects of agriculturally important microorganisms. Focus needs to be on transforming agricultural systems from nutrient deficient to nutrient rich soil-plant system. This book is split into two parts, with an aim to provide comprehensive description and highlight a holistic approach. It elucidated various mechanisms of nutrients solubilisation and its importance in enhancement of plant growth, nutrient content, yield of various crops and vegetables as well as soil fertility and health. Unit-1 in this book explains the importance of soil microbes in sustainable crop production. It contains chapters detailing the role and mechanism of action of soil microbes which enhances the productivity via various bio-chemical and molecular channe ls. In unit-2 the role of microbes in plant protection is elaborated. With the help of case studies of food crops, multiple ways in which soil microbes help in fighting and preventing plant diseases is explained. With the given content and layout book will be an all-inclusive collection of information, which will be useful for students, academicians, researchers working in the field of rhizospheric mechanisms, agricultural microbiology, soil microbiology, biotechnology, agronomy and sustainable agriculture and also for policy makers in the area of food security and sustainable agriculture.

Principles of Plant-Microbe Interactions

Principles of Plant-Microbe Interactions
Author: Ben Lugtenberg
Publisher: Springer
Total Pages: 447
Release: 2014-12-04
Genre: Science
ISBN: 3319085751

The use of microbial plant protection products is growing and their importance will strongly increase due to political and public pressure. World population is growing and the amount of food needed by 2050 will be double of what is produced now whereas the area of agricultural land is decreasing. We must increase crop yield in a sustainable way. Chemical plant growth promoters must be replaced by microbiological products. Also here, the use of microbial products is growing and their importance will strongly increase. A growing area of agricultural land is salinated. Global warming will increase this process. Plants growth is inhibited by salt or even made impossible and farmers tend to disuse the most salinated lands. Microbes have been very successfully used to alleviate salt stress of plants. Chemical pollution of land can make plant growth difficult and crops grown are often polluted and not suitable for consumption. Microbes have been used to degrade these chemical pollutants.

Beneficial Microbes for Sustainable Agriculture and Environmental Management

Beneficial Microbes for Sustainable Agriculture and Environmental Management
Author: Jeyabalan Sangeetha
Publisher: CRC Press
Total Pages: 257
Release: 2020-03-27
Genre: Science
ISBN: 1000008231

Microbes are the most abundant organisms in the biosphere and regulate many critical elemental and biogeochemical phenomena. Because microbes are the key players in the carbon cycle and in related biological reactions, microbial ecology is a vital research area for understanding the contribution of the biosphere in global warming and the response of the natural environment to climate variations. The beneficial uses of microbes have enabled constructive and cost-effective responses that have not been possible through physical or chemical methods. This new volume reviews the multifaceted interactions among microbes, ecosystems, and their pivotal role in maintaining a more balanced environment, in order to help facilitate living organisms coexisting with the natural environment. With extensive references, tables, and illustrations, this book provides valuable information on microbial utilization for environmental sustainability and provides fascinating insights into microbial diversity. Key features include: Looks at enhancing plant production through growth-promoting arbuscular mycorrhizae, endophytic bacteria, and microbiome networks Considers microbial degradation and environmental management of e-wastes and azo dyes Explores soil-plant microbe interactions in metal-contaminated soils Examines radiation-resistant thermophiles for engineered bioremediation Describes potential indigenous/effective microbes for wastewater treatment processes Presents research on earthworms and microbes for organic farming

Microbial Inoculants in Sustainable Agricultural Productivity

Microbial Inoculants in Sustainable Agricultural Productivity
Author: Dhananjaya Pratap Singh
Publisher: Springer
Total Pages: 354
Release: 2016-02-22
Genre: Science
ISBN: 813222647X

How to achieve sustainable agricultural production without compromising environmental quality, agro-ecosystem function and biodiversity is a serious consideration in current agricultural practices. Farming systems’ growing dependency on chemical inputs (fertilizers, pesticides, nutrients etc.) poses serious threats with regard to crop productivity, soil fertility, the nutritional value of farm produce, management of pests and diseases, agro-ecosystem well-being, and health issues for humans and animals. At the same time, microbial inoculants in the form of biofertilizers, plant growth promoters, biopesticides, soil health managers, etc. have gained considerable attention among researchers, agriculturists, farmers and policy makers. The first volume of the book Microbial Inoculants in Sustainable Agricultural Productivity - Research Perspectives highlights the efforts of global experts with regard to various aspects of microbial inoculants. Emphasis is placed on recent advances in microbiological techniques for the isolation, characterization, identification and evaluation of functional properties using biochemical and molecular tools. The taxonomic characterization of agriculturally important microorganisms is documented, along with their applications in field conditions. The book exploresthe identification, characterization and diversity analysis of endophytic microorganisms in various crops including legumes/ non-legumes, as well as the assessment of their beneficial impacts in the context of promotingplant growth. Moreover, it provides essential updates onthe diversity and role of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal mycorrhizal fungi (AMF). Further chaptersexamine in detailbiopesticides, thehigh-density cultivation of bioinoculants in submerged culture, seed biopriming strategies for abiotic and biotic stress tolerance, andPGPR as abio-control agent. Given its content,the book offers a valuable resource for researchers involved in research and development concerningPGPR, biopesticides and microbial inoculants.

Microbes in Sustainable Agriculture

Microbes in Sustainable Agriculture
Author: Mohammad Saghir Khan
Publisher:
Total Pages: 0
Release: 2008
Genre: Agricultural microbiology
ISBN: 9781604569292

The major aim of "microbes in sustainable agriculture" is to provide unique collection of data and a holistic view of the subject while presenting more current ideas in the field where significant advances have been made. Collectively, this book provides recent coverage of the role of microbes in sustainability of agronomic practices and thus is likely to be of tremendous value to the students, scientists, teachers of microbiology, biotechnology, environmental biology, agronomy, plant physiology and plant protection, who are interested in this area. Each chapter in this book has been contributed by a qualified team of teachers/scientists. In this context, the current state of knowledge in a specialised field is reviewed without compromising the basic conceptual frame work presented in this book. A concerted effort has been made by editors/authors to bring in quality presentation. This book thus addresses a lot of common queries and of course some odd ones that bring an interesting approach to problems solving in agricultural practices with optimum application of diverse microbes. This book presents readers with stimulation to forge thought in a non-conventional way to understand complex issues as it addresses many problems previously ignored. This book serves as an important source because of its unique compilation of data and text on the application and importance of microbes in crop productivity to achieve global food security.

Microorganisms in Sustainable Agriculture and Biotechnology

Microorganisms in Sustainable Agriculture and Biotechnology
Author: T. Satyanarayana
Publisher: Springer Science & Business Media
Total Pages: 832
Release: 2012-01-02
Genre: Science
ISBN: 9400722141

This review of recent developments in our understanding of the role of microbes in sustainable agriculture and biotechnology covers a research area with enormous untapped potential. Chemical fertilizers, pesticides, herbicides and other agricultural inputs derived from fossil fuels have increased agricultural production, yet growing awareness and concern over their adverse effects on soil productivity and environmental quality cannot be ignored. The high cost of these products, the difficulties of meeting demand for them, and their harmful environmental legacy have encouraged scientists to develop alternative strategies to raise productivity, with microbes playing a central role in these efforts. One application is the use of soil microbes as bioinoculants for supplying nutrients and/or stimulating plant growth. Some rhizospheric microbes are known to synthesize plant growth-promoters, siderophores and antibiotics, as well as aiding phosphorous uptake. The last 40 years have seen rapid strides made in our appreciation of the diversity of environmental microbes and their possible benefits to sustainable agriculture and production. The advent of powerful new methodologies in microbial genetics, molecular biology and biotechnology has only quickened the pace of developments. The vital part played by microbes in sustaining our planet’s ecosystems only adds urgency to this enquiry. Culture-dependent microbes already contribute much to human life, yet the latent potential of vast numbers of uncultured—and thus untouched—microbes, is enormous. Culture-independent metagenomic approaches employed in a variety of natural habitats have alerted us to the sheer diversity of these microbes, and resulted in the characterization of novel genes and gene products. Several new antibiotics and biocatalysts have been discovered among environmental genomes and some products have already been commercialized. Meanwhile, dozens of industrial products currently formulated in large quantities from petrochemicals, such as ethanol, butanol, organic acids, and amino acids, are equally obtainable through microbial fermentation. Edited by a trio of recognized authorities on the subject, this survey of a fast-moving field—with so many benefits within reach—will be required reading for all those investigating ways to harness the power of microorganisms in making both agriculture and biotechnology more sustainable.

Microorganisms in Sustainable Agriculture, Food, and the Environment

Microorganisms in Sustainable Agriculture, Food, and the Environment
Author: Deepak Kumar Verma
Publisher: CRC Press
Total Pages: 453
Release: 2017-09-01
Genre: Science
ISBN: 1771884800

In agricultural education and research, the study of agricultural microbiology has undergone tremendous changes in the past few decades, leading to today’s scientific farming that is a backbone of economy all over the globe. Microorganisms in Sustainable Agriculture, Food, and the Environment fills the need for a comprehensive volume on recent advances and innovations in microbiology. The book is divided into four main parts: food microbiology; soil microbiology; environmental microbiology, and industrial microbiology and microbial biotechnology.

Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology

Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology
Author: Ajay Kumar
Publisher: Woodhead Publishing
Total Pages: 317
Release: 2019-06-20
Genre: Technology & Engineering
ISBN: 0128170050

Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology explores PGPMs (actinomycetes, bacteria, fungi and cyanobacteria) and their multidimensional roles in agriculture, including their increasing applications in sustainable agriculture. In addition to their traditional understanding and applications in agriculture, PGPMs are increasingly known as a source of nano-particles production that are gaining significant interest in their ability to provide more economically, environmentally friendly and safe technologies to crop growers. The book considers new concepts and current developments in plant growth, thus promoting microorganisms research and evaluating its implications for sustainable productivity. Users will find this to be an invaluable resource for researchers in applied microbial biotechnology, soil science, nano-technology of microbial strains, and industry personnel in these areas. - Presents basic and applied aspects of sustainable agriculture, including nano-technology in sustainable agriculture - Identifies molecular tools/omics approaches for enhancing plant growth promoting microorganisms - Discusses plant growth promoting microorganisms in bioactive compounds production, and as a source of nano-particles

Microbial Inoculants in Sustainable Agricultural Productivity

Microbial Inoculants in Sustainable Agricultural Productivity
Author: Dhananjaya Pratap Singh
Publisher: Springer
Total Pages: 316
Release: 2016-03-23
Genre: Science
ISBN: 8132226445

The performance of crops in the soil largely depends on the physico-chemical components of the soil, which regulate the availability of nutrients as well as abiotic and biotic stresses. Microbes are the integral component of any agricultural soil, playing a vital role in regulating the bioavailability of nutrients, the tolerance to abiotic and biotic stresses and management of seed-borneand soil-borne plant diseases. The second volume of the book Microbial Inoculants in Sustainable Agricultural Productivity - Functional Applications reflects the pioneering efforts of eminent researchers to explore the functions of promising microbes as microbial inoculants, establish inoculants for field applications and promote corresponding knowledge among farming communities. In this volume, readers will find dedicated chapters on the role of microbes as biofertilizers and biopesticides in the improvement of crop plants, managing soil fertility and plant health, enhancing the efficiency of soil nutrients and establishing systemic phytopathogen resistance in plants, as well as managing various kinds of plant stress by applying microbial inoculants. The impact of microbial inoculants on the remediation of heavy metals, soil carbon sequestration, function of rhizosphere microbial communities and remediation of heavy metal contaminated agricultural soils is also covered in great detail. In this Volume, a major focus is on the approaches, strategies, advances and technologies used to develop suitable and sustainable delivery systems for microbial inoculants in field applications. Subsequent chapters investigate the role of nanomaterials in agriculture and the nanoparticle-mediated biocontrol of nematodes. An overview of the challenges facing the regulation and registration of biopesticides in India rounds out the coverage.

Plant Microbiomes for Sustainable Agriculture

Plant Microbiomes for Sustainable Agriculture
Author: Ajar Nath Yadav
Publisher: Springer Nature
Total Pages: 496
Release: 2020-03-06
Genre: Technology & Engineering
ISBN: 3030384535

This book encompasses the current knowledge of plant microbiomes and their potential biotechnological application for plant growth, crop yield and soil health for sustainable agriculture. The plant microbiomes (rhizospheric, endophytic and epiphytic) play an important role in plant growth, development, and soil health. Plant and rhizospheric soil are a valuable natural resource harbouring hotspots of microbes, and it plays critical roles in the maintenance of global nutrient balance and ecosystem function. The diverse group of microbes is key components of soil–plant systems, where they are engaged in an intense network of interactions in the rhizosphere/endophytic/phyllospheric. The rhizospheric microbial diversity present in rhizospheric zones has a sufficient amount of nutrients release by plant root systems in form of root exudates for growth, development and activities of microbes. The endophytic microbes are referred to those microorganisms, which colonize in the interior of the plant parts, viz root, stem or seeds without causing any harmful effect on host plant. Endophytic microbes enter in host plants mainly through wounds, naturally occurring as a result of plant growth, or through root hairs and at epidermal conjunctions. Endophytes may be transmitted either vertically (directly from parent to offspring) or horizontally (among individuals). The phyllosphere is a common niche for synergism between microbes and plant. The leaf surface has been termed as phyllosphere and zone of leaves inhabited by microorganisms as phyllosphere. The plant part, especially leaves, is exposed to dust and air currents resulting in the establishments of typical flora on their surface aided by the cuticles, waxes and appendages, which help in the anchorage of microorganisms. The phyllospheric microbes may survive or proliferate on leaves depending on extent of influences of material in leaf diffuseness or exudates. The leaf diffuseness contains the principal nutrients factors (amino acids, glucose, fructose and sucrose), and such specialized habitats may provide niche for nitrogen fixation and secretions of substances capable of promoting the growth of plants. The microbes associated with plant as rhizospheric, endophytic and epiphytic with plant growth promoting (PGP) attributes have emerged as an important and promising tool for sustainable agriculture. PGP microbes promote plant growth directly or indirectly, either by releasing plant growth regulators; solubilization of phosphorus, potassium and zinc; biological nitrogen fixation or by producing siderophore, ammonia, HCN and other secondary metabolites which are antagonistic against pathogenic microbes. The PGP microbes belong to different phylum of archaea (Euryarchaeota); bacteria (Acidobacteria, Actinobacteria, Bacteroidetes, Deinococcus-Thermus, Firmicutes and Proteobacteria) and fungi (Ascomycota and Basidiomycota), which include different genera namely Achromobacter, Arthrobacter, Aspergillus, Azospirillum, Azotobacter, Bacillus, Beijerinckia, Burkholderia, Enterobacter, Erwinia, Flavobacterium, Gluconoacetobacter, Haloarcula, Herbaspirillum, Methylobacterium, Paenibacillus, Pantoea, Penicillium, Piriformospora, Planomonospora, Pseudomonas, Rhizobium, Serratia and Streptomyces. These PGP microbes could be used as biofertilizers/bioinoculants at place of chemical fertilizers for sustainable agriculture. The aim of “Plant Microbiomes for Sustainable Agriculture” is to provide the current developments in the understanding of microbial diversity associated with plant systems in the form of rhizospheric, endophytic and epiphytic. The book is useful to scientist, research and students related to microbiology, biotechnology, agriculture, molecular biology, environmental biology and related subjects.