Micro Electro Mechanical System Design

Micro Electro Mechanical System Design
Author: James J. Allen
Publisher: CRC Press
Total Pages: 492
Release: 2005-07-08
Genre: Technology & Engineering
ISBN: 1420027751

It is challenging at best to find a resource that provides the breadth of information necessary to develop a successful micro electro mechanical system (MEMS) design. Micro Electro Mechanical System Design is that resource. It is a comprehensive, single-source guide that explains the design process by illustrating the full range of issues involved,

Micro Electro Mechanical System Design

Micro Electro Mechanical System Design
Author: James J. Allen
Publisher: CRC Press
Total Pages: 496
Release: 2005-07-08
Genre: Technology & Engineering
ISBN: 9780824758240

It is challenging at best to find a resource that provides the breadth of information necessary to develop a successful micro electro mechanical system (MEMS) design. Micro Electro Mechanical System Design is that resource. It is a comprehensive, single-source guide that explains the design process by illustrating the full range of issues involved, how they are interrelated, and how they can be quickly and accurately addressed. The materials are presented in logical order relative to the manner a MEMS designer needs to apply them. For example, in order for a project to be completed correctly, on time, and within budget, the following diverse yet correlated issues must be attended to during the initial stages of design and development: Understanding the fabrication technologies that are available Recognizing the relevant physics involved for micron scale devices Considering implementation issues applicable to computer aided design Focusing on the engineering details and the subsequent evaluation testing Maintaining an eye for detail regarding both reliability and packaging These issues are fully addressed in this book, along with questions and problems at the end of each chapter that promote review and further contemplation of each topic. In addition, the appendices offer information that complement each stage of project design and development.

An Introduction to Microelectromechanical Systems Engineering

An Introduction to Microelectromechanical Systems Engineering
Author: Nadim Maluf
Publisher: Artech House
Total Pages: 312
Release: 2004
Genre: Technology & Engineering
ISBN: 9781580535915

Bringing you up-to-date with the latest developments in MEMS technology, this major revision of the best-selling An Introduction to Microelectromechanical Systems Engineering offers you a current understanding of this cutting-edge technology. You gain practical knowledge of MEMS materials, design, and manufacturing, and learn how it is being applied in industrial, optical, medical and electronic markets. The second edition features brand new sections on RF MEMS, photo MEMS, micromachining on materials other than silicon, reliability analysis, plus an expanded reference list. With an emphasis on commercialized products, this unique resource helps you determine whether your application can benefit from a MEMS solution, understand how other applications and companies have benefited from MEMS, and select and define a manufacturable MEMS process for your application. You discover how to use MEMS technology to enable new functionality, improve performance, and reduce size and cost. The book teaches you the capabilities and limitations of MEMS devices and processes, and helps you communicate the relative merits of MEMS to your company's management. From critical discussions on design operation and process fabrication of devices and systems, to a thorough explanation of MEMS packaging, this easy-to-understand book clearly explains the basics of MEMS engineering, making it an invaluable reference for your work in the field.

Mechanics of Microelectromechanical Systems

Mechanics of Microelectromechanical Systems
Author: Nicolae Lobontiu
Publisher: Springer Science & Business Media
Total Pages: 415
Release: 2006-01-16
Genre: Technology & Engineering
ISBN: 0387230378

This book offers a comprehensive coverage to the mechanics of microelectromechanical systems (MEMS), which are analyzed from a mechanical engineer’s viewpoint as devices that transform an input form of energy, such as thermal, electrostatic, electromagnetic or optical, into output mechanical motion (in the case of actuation) or that can operate with the reversed functionality (as in sensors) and convert an external stimulus, such as mechanical motion, into (generally) electric energy. The impetus of this proposal stems from the perception that such an approach might contribute to a more solid understanding of the principles governing the mechanics of MEMS, and would hopefully enhance the efficiency of modeling and designing reliable and desirably-optimized microsystems. The work represents an attempt at both extending and deepening the mechanical-based approach to MEMS in the static domain by providing simple, yet reliable tools that are applicable to micromechanism design through current fabrication technologies. Lumped-parameter stiffness and compliance properties of flexible components are derived both analytically (as closed-form solutions) and as simplified (engineering) formulas. Also studied are the principal means of actuation/sensing and their integration into the overall microsystem. Various examples of MEMS are studied in order to better illustrate the presentation of the different modeling principles and algorithms. Through its objective, approach and scope, this book offers a novel and systematic insight into the MEMS domain and complements existing work in the literature addressing part of the material developed herein.

Mems for Biomedical Applications

Mems for Biomedical Applications
Author: Shekhar Bhansali
Publisher: Elsevier
Total Pages: 511
Release: 2012-07-18
Genre: Technology & Engineering
ISBN: 0857096273

The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology.The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS.With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy

Silicon Carbide Micro Electromechanical Systems for Harsh Environments

Silicon Carbide Micro Electromechanical Systems for Harsh Environments
Author: Rebecca Cheung
Publisher: Imperial College Press
Total Pages: 193
Release: 2006
Genre: Technology & Engineering
ISBN: 1860949096

This unique book describes the science and technology of silicon carbide (SiC) microelectromechanical systems (MEMS), from the creation of SiC material to the formation of final system, through various expert contributions by several leading key figures in the field. The book contains high-quality up-to-date scientific information concerning SiC MEMS for harsh environments summarized concisely for students, academics, engineers and researchers in the field of SiC MEMS. This is the only book that addresses in a comprehensive manner the main advantages of SiC as a MEMS material for applications in high temperature and harsh environments, as well as approaches to the relevant technologies, with a view progressing towards the final product. Sample Chapter(s). Chapter 1: Introduction to Silicon Carbide (SIC) Microelectromechanical Systems (MEMS) (800 KB). Contents: Introduction to Silicon Carbide (SiC) Microelectromechanical Systems (MEMS) (R Cheung); Deposition Techniques for SiC MEMS (C A Zorman et al.); Review of Issues Pertaining to the Development of Contacts to Silicon Carbide: 1996OCo2002 (L M Porter & F A Mohammad); Dry Etching of SiC (S J Pearton); Design, Performance and Applications of SiC MEMS (S Zappe). Readership: Academic researchers in MEMS and industrial engineers engaged in SiC MEMS research."

MEMS: A Practical Guide of Design, Analysis, and Applications

MEMS: A Practical Guide of Design, Analysis, and Applications
Author: Jan Korvink
Publisher: Springer Science & Business Media
Total Pages: 981
Release: 2010-05-28
Genre: Technology & Engineering
ISBN: 3540336559

A new generation of MEMS books has emerged with this cohesive guide on the design and analysis of micro-electro-mechanical systems (MEMS). Leading experts contribute to its eighteen chapters that encompass a wide range of innovative and varied applications. This publication goes beyond fabrication techniques covered by earlier books and fills a void created by a lack of industry standards. Subjects such as transducer operations and free-space microsystems are contained in its chapters. Satisfying a demand for literature on analysis and design of microsystems the book deals with a broad array of industrial applications. This will interest engineering and research scientists in industry and academia.

Analysis and Design Principles of MEMS Devices

Analysis and Design Principles of MEMS Devices
Author: Minhang Bao
Publisher: Elsevier
Total Pages: 327
Release: 2005-04-12
Genre: Technology & Engineering
ISBN: 008045562X

Sensors and actuators are now part of our everyday life and appear in many appliances, such as cars, vending machines and washing machines. MEMS (Micro Electro Mechanical Systems) are micro systems consisting of micro mechanical sensors, actuators and micro electronic circuits. A variety of MEMS devices have been developed and many mass produced, but the information on these is widely dispersed in the literature. This book presents the analysis and design principles of MEMS devices. The information is comprehensive, focusing on microdynamics, such as the mechanics of beam and diaphragm structures, air damping and its effect on the motion of mechanical structures. Using practical examples, the author examines problems associated with analysis and design, and solutions are included at the back of the book. The ideal advanced level textbook for graduates, Analysis and Design Principles of MEMS Devices is a suitable source of reference for researchers and engineers in the field. * Presents the analysis and design principles of MEMS devices more systematically than ever before. * Includes the theories essential for the analysis and design of MEMS includes the dynamics of micro mechanical structures * A problem section is included at the end of each chapter with answers provided at the end of the book.