Metric Number Theory
Download Metric Number Theory full books in PDF, epub, and Kindle. Read online free Metric Number Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Glyn Harman |
Publisher | : Oxford University Press on Demand |
Total Pages | : 297 |
Release | : 1998 |
Genre | : Mathematics |
ISBN | : 9780198500834 |
This book deals with the number-theoretic properties of almost all real numbers. It brings together many different types of result never covered within the same volume before, thus showing interactions and common ideas between different branches of the subject. It provides an indispensablecompendium of basic results, important theorems and open problems. Starting from the classical results of Borel, Khintchine and Weyl, normal numbers, Diophantine approximation and uniform distribution are all discussed. Questions are generalized to higher dimensions and various non-periodic problemsare also considered (for example restricting approximation to fractions with prime numerator and denominator). Finally, the dimensions of some of the exceptional sets of measure zero are considered.
Author | : Fritz Schweiger |
Publisher | : |
Total Pages | : 326 |
Release | : 1995 |
Genre | : Mathematics |
ISBN | : |
Ergodic theory is part of the important number theory of mathematics. It is a basic tool for describing 'chaotic' properties of fibred dynamical systems. This book first considers the notion of a fibred system, and goes on to discuss basic properties such as ergodicity, conservativity, andthe existence of invariant measures.
Author | : Terence Tao |
Publisher | : American Mathematical Soc. |
Total Pages | : 206 |
Release | : 2021-09-03 |
Genre | : Education |
ISBN | : 1470466406 |
This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.
Author | : David Fisher |
Publisher | : University of Chicago Press |
Total Pages | : 573 |
Release | : 2022-02-07 |
Genre | : Mathematics |
ISBN | : 022680402X |
"Mathematicians David Fisher, Dmitry Kleinbock, and Gregory Soifer highlight in this edited collection the foundations and evolution of research by mathematician Gregory Margulis. Margulis is unusual in the degree to which his solutions to particular problems have opened new vistas of mathematics. Margulis' ideas were central, for example, to developments that led to the recent Fields Medals of Elon Lindenstrauss and Maryam Mirzhakhani. The broad goal of this volume is to introduce these areas, their development, their use in current research, and the connections between them. The foremost experts on the topic have written each of the chapters in this volume with a view to making them accessible by graduate students and by experts in other parts of mathematics"--
Author | : Dzmitry Badziahin |
Publisher | : Cambridge University Press |
Total Pages | : 341 |
Release | : 2016-11-10 |
Genre | : Mathematics |
ISBN | : 1107552370 |
Presents current research in various topics, including homogeneous dynamics, Diophantine approximation and combinatorics.
Author | : Irving Kaplansky |
Publisher | : American Mathematical Society |
Total Pages | : 140 |
Release | : 2020-09-10 |
Genre | : Mathematics |
ISBN | : 1470463849 |
This is a book that could profitably be read by many graduate students or by seniors in strong major programs … has a number of good features. There are many informal comments scattered between the formal development of theorems and these are done in a light and pleasant style. … There is a complete proof of the equivalence of the axiom of choice, Zorn's Lemma, and well-ordering, as well as a discussion of the use of these concepts. There is also an interesting discussion of the continuum problem … The presentation of metric spaces before topological spaces … should be welcomed by most students, since metric spaces are much closer to the ideas of Euclidean spaces with which they are already familiar. —Canadian Mathematical Bulletin Kaplansky has a well-deserved reputation for his expository talents. The selection of topics is excellent. — Lance Small, UC San Diego This book is based on notes from a course on set theory and metric spaces taught by Edwin Spanier, and also incorporates with his permission numerous exercises from those notes. The volume includes an Appendix that helps bridge the gap between metric and topological spaces, a Selected Bibliography, and an Index.
Author | : Manfred Einsiedler |
Publisher | : Springer Science & Business Media |
Total Pages | : 486 |
Release | : 2010-09-11 |
Genre | : Mathematics |
ISBN | : 0857290215 |
This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.
Author | : |
Publisher | : Academic Press |
Total Pages | : 449 |
Release | : 1986-05-05 |
Genre | : Mathematics |
ISBN | : 0080873324 |
This book is written for the student in mathematics. Its goal is to give a view of the theory of numbers, of the problems with which this theory deals, and of the methods that are used. We have avoided that style which gives a systematic development of the apparatus and have used instead a freer style, in which the problems and the methods of solution are closely interwoven. We start from concrete problems in number theory. General theories arise as tools for solving these problems. As a rule, these theories are developed sufficiently far so that the reader can see for himself their strength and beauty, and so that he learns to apply them. Most of the questions that are examined in this book are connected with the theory of diophantine equations - that is, with the theory of the solutions in integers of equations in several variables. However, we also consider questions of other types; for example, we derive the theorem of Dirichlet on prime numbers in arithmetic progressions and investigate the growth of the number of solutions of congruences.
Author | : R.P. Bambah |
Publisher | : Birkhäuser |
Total Pages | : 525 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 303487023X |
The Indian National Science Academy on the occasion ofthe Golden Jubilee Celebration (Fifty years of India's Independence) decided to publish a number of monographs on the selected fields. The editorial board of INS A invited us to prepare a special monograph in Number Theory. In reponse to this assignment, we invited several eminent Number Theorists to contribute expository/research articles for this monograph on Number Theory. Al though some ofthose invited, due to other preoccupations-could not respond positively to our invitation, we did receive fairly encouraging response from many eminent and creative number theorists throughout the world. These articles are presented herewith in a logical order. We are grateful to all those mathematicians who have sent us their articles. We hope that this monograph will have a significant impact on further development in this subject. R. P. Bambah v. C. Dumir R. J. Hans-Gill A Centennial History of the Prime Number Theorem Tom M. Apostol The Prime Number Theorem Among the thousands of discoveries made by mathematicians over the centuries, some stand out as significant landmarks. One of these is the prime number theorem, which describes the asymptotic distribution of prime numbers. It can be stated in various equivalent forms, two of which are: x (I) K(X) '" -I - as x --+ 00, ogx and Pn '" n log n as n --+ 00. (2) In (1), K(X) denotes the number of primes P ::s x for any x > O.
Author | : Victor Beresnevich |
Publisher | : Springer Nature |
Total Pages | : 281 |
Release | : 2021-01-08 |
Genre | : Technology & Engineering |
ISBN | : 3030613038 |
This volume explores the rich interplay between number theory and wireless communications, reviewing the surprisingly deep connections between these fields and presenting new research directions to inspire future research. The contributions of this volume stem from the Workshop on Interactions between Number Theory and Wireless Communication held at the University of York in 2016. The chapters, written by leading experts in their respective fields, provide direct overviews of highly exciting current research developments. The topics discussed include metric Diophantine approximation, geometry of numbers, homogeneous dynamics, algebraic lattices and codes, network and channel coding, and interference alignment. The book is edited by experts working in number theory and communication theory. It thus provides unique insight into key concepts, cutting-edge results, and modern techniques that play an essential role in contemporary research. Great effort has been made to present the material in a manner that is accessible to new researchers, including PhD students. The book will also be essential reading for established researchers working in number theory or wireless communications looking to broaden their outlook and contribute to this emerging interdisciplinary area.