Methods Of Modern Mathematical Physics Functional Analysis
Download Methods Of Modern Mathematical Physics Functional Analysis full books in PDF, epub, and Kindle. Read online free Methods Of Modern Mathematical Physics Functional Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Michael Reed |
Publisher | : Gulf Professional Publishing |
Total Pages | : 417 |
Release | : 1980 |
Genre | : Functional analysis |
ISBN | : 0125850506 |
"This book is the first of a multivolume series devoted to an exposition of functional analysis methods in modern mathematical physics. It describes the fundamental principles of functional analysis and is essentially self-contained, although there are occasional references to later volumes. We have included a few applications when we thought that they would provide motivation for the reader. Later volumes describe various advanced topics in functional analysis and give numerous applications in classical physics, modern physics, and partial differential equations." --Publisher description.
Author | : Michael Reed |
Publisher | : Academic Press |
Total Pages | : 424 |
Release | : 1978-04-28 |
Genre | : Mathematics |
ISBN | : |
Author | : Michael Reed |
Publisher | : Elsevier |
Total Pages | : 388 |
Release | : 1975 |
Genre | : Mathematics |
ISBN | : 9780125850025 |
Author | : Philippe Blanchard |
Publisher | : Springer Science & Business Media |
Total Pages | : 469 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461200490 |
Physics has long been regarded as a wellspring of mathematical problems. Mathematical Methods in Physics is a self-contained presentation, driven by historic motivations, excellent examples, detailed proofs, and a focus on those parts of mathematics that are needed in more ambitious courses on quantum mechanics and classical and quantum field theory. Aimed primarily at a broad community of graduate students in mathematics, mathematical physics, physics and engineering, as well as researchers in these disciplines.
Author | : Richard Courant |
Publisher | : John Wiley & Sons |
Total Pages | : 852 |
Release | : 2008-09-26 |
Genre | : Science |
ISBN | : 3527617248 |
Since the first volume of this work came out in Germany in 1937, this book, together with its first volume, has remained standard in the field. Courant and Hilbert's treatment restores the historically deep connections between physical intuition and mathematical development, providing the reader with a unified approach to mathematical physics. The present volume represents Richard Courant's final revision of 1961.
Author | : Peter Szekeres |
Publisher | : Cambridge University Press |
Total Pages | : 620 |
Release | : 2004-12-16 |
Genre | : Mathematics |
ISBN | : 9780521829601 |
This textbook, first published in 2004, provides an introduction to the major mathematical structures used in physics today.
Author | : Michael Reed |
Publisher | : Academic Press |
Total Pages | : 488 |
Release | : 1979-04-28 |
Genre | : Mathematics |
ISBN | : |
Author | : Harry Hochstadt |
Publisher | : Courier Corporation |
Total Pages | : 354 |
Release | : 2012-04-30 |
Genre | : Science |
ISBN | : 0486168786 |
A modern classic, this clearly written, incisive textbook provides a comprehensive, detailed survey of the functions of mathematical physics, a field of study straddling the somewhat artificial boundary between pure and applied mathematics. In the 18th and 19th centuries, the theorists who devoted themselves to this field — pioneers such as Gauss, Euler, Fourier, Legendre, and Bessel — were searching for mathematical solutions to physical problems. Today, although most of the functions have practical applications, in areas ranging from the quantum-theoretical model of the atom to the vibrating membrane, some, such as those related to the theory of discontinuous groups, still remain of purely mathematical interest. Chapters One and Two examine orthogonal polynomials, with sections on such topics as the recurrence formula, the Christoffel-Darboux formula, the Weierstrass approximation theorem, and the application of Hermite polynomials to quantum mechanics. Chapter Three is devoted to the principal properties of the gamma function, including asymptotic expansions and Mellin-Barnes integrals. Chapter Four covers hypergeometric functions, including a review of linear differential equations with regular singular points, and a general method for finding integral representations. Chapters Five and Six are concerned with the Legendre functions and their use in the solutions of Laplace's equation in spherical coordinates, as well as problems in an n-dimension setting. Chapter Seven deals with confluent hypergeometric functions, and Chapter Eight examines, at length, the most important of these — the Bessel functions. Chapter Nine covers Hill's equations, including the expansion theorems.
Author | : Serge Lang |
Publisher | : Springer Science & Business Media |
Total Pages | : 591 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461208971 |
This book is meant as a text for a first-year graduate course in analysis. In a sense, it covers the same topics as elementary calculus but treats them in a manner suitable for people who will be using it in further mathematical investigations. The organization avoids long chains of logical interdependence, so that chapters are mostly independent. This allows a course to omit material from some chapters without compromising the exposition of material from later chapters.
Author | : Erwin Kreyszig |
Publisher | : John Wiley & Sons |
Total Pages | : 706 |
Release | : 1991-01-16 |
Genre | : Mathematics |
ISBN | : 0471504599 |
KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry