METEOROLOGICAL DATA ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON

METEOROLOGICAL DATA ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
Total Pages: 281
Release: 2023-07-31
Genre: Computers
ISBN:

In this meteorological data analysis and prediction project using machine learning with Python, we begin by conducting data exploration to understand the dataset's structure and contents. We load the dataset and check for any missing values or anomalies that may require preprocessing. To gain insights into the data, we visualize the distribution of each feature, examining histograms, box plots, and scatter plots. This helps us identify potential outliers and understand the relationships between different variables. After data exploration, we preprocess the dataset, handling missing values through imputation techniques or removing rows with missing data, ensuring the data is ready for machine learning algorithms. Next, we define the problem we want to solve, which is predicting the weather summary based on various meteorological parameters. The weather summary serves as our target variable, while the other features act as input variables. We split the data into training and testing sets to train the machine learning models on one subset and evaluate their performance on unseen data. For the prediction task, we start with simple machine learning models like Logistic Regression or Decision Trees. We fit these models to the training data and assess their accuracy on the test set. To improve model performance, we explore more complex algorithms, such as Logistic Regression, K-Nearest Neighbors, Support Vector, Decision Trees, Random Forests, Gradient Boosting, Extreme Gradient Boosting, Light Gradient Boosting, and Multi-Layer Perceptron (MLP). We use grid search to tune the hyperparameters of these models and find the best combination that optimizes their performance. During model evaluation, we use metrics such as accuracy, precision, recall, and F1-score to measure how well the models predict the weather summary. To ensure robustness and reliability of the results, we apply k-fold cross-validation, where the dataset is divided into k subsets, and each model is trained and evaluated k times. Throughout the project, we pay attention to potential issues like overfitting or underfitting, striving to strike a balance between model complexity and generalization. Visualizations play a crucial role in understanding the model's behavior and identifying areas for improvement. We create various plots, including learning curves and confusion matrices, to interpret the model's performance. In the prediction phase, we apply the trained models to the test dataset to predict the weather summary for each sample. We compare the predicted values with the actual values to assess the model's performance on unseen data. The entire project is well-documented, ensuring transparency and reproducibility. We record the methodologies, findings, and results to facilitate future reference or sharing with stakeholders. We analyze the predictive capabilities of the models and summarize their strengths and limitations. We discuss potential areas of improvement and future directions to enhance the model's accuracy and robustness. The main objective of this project is to accurately predict weather summaries based on meteorological data, while also gaining valuable insights into the underlying patterns and trends in the data. By leveraging machine learning algorithms, preprocessing techniques, hyperparameter tuning, and thorough evaluation, we aim to build reliable models that can assist in weather forecasting and analysis.

ANALYSIS AND PREDICTION PROJECTS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON

ANALYSIS AND PREDICTION PROJECTS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
Total Pages: 860
Release: 2022-02-17
Genre: Computers
ISBN:

PROJECT 1: DEFAULT LOAN PREDICTION BASED ON CUSTOMER BEHAVIOR Using Machine Learning and Deep Learning with Python In finance, default is failure to meet the legal obligations (or conditions) of a loan, for example when a home buyer fails to make a mortgage payment, or when a corporation or government fails to pay a bond which has reached maturity. A national or sovereign default is the failure or refusal of a government to repay its national debt. The dataset used in this project belongs to a Hackathon organized by "Univ.AI". All values were provided at the time of the loan application. Following are the features in the dataset: Income, Age, Experience, Married/Single, House_Ownership, Car_Ownership, Profession, CITY, STATE, CURRENT_JOB_YRS, CURRENT_HOUSE_YRS, and Risk_Flag. The Risk_Flag indicates whether there has been a default in the past or not. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: AIRLINE PASSENGER SATISFACTION Analysis and Prediction Using Machine Learning and Deep Learning with Python The dataset used in this project contains an airline passenger satisfaction survey. In this case, you will determine what factors are highly correlated to a satisfied (or dissatisfied) passenger and predict passenger satisfaction. Below are the features in the dataset: Gender: Gender of the passengers (Female, Male); Customer Type: The customer type (Loyal customer, disloyal customer); Age: The actual age of the passengers; Type of Travel: Purpose of the flight of the passengers (Personal Travel, Business Travel); Class: Travel class in the plane of the passengers (Business, Eco, Eco Plus); Flight distance: The flight distance of this journey; Inflight wifi service: Satisfaction level of the inflight wifi service (0:Not Applicable;1-5); Departure/Arrival time convenient: Satisfaction level of Departure/Arrival time convenient; Ease of Online booking: Satisfaction level of online booking; Gate location: Satisfaction level of Gate location; Food and drink: Satisfaction level of Food and drink; Online boarding: Satisfaction level of online boarding; Seat comfort: Satisfaction level of Seat comfort; Inflight entertainment: Satisfaction level of inflight entertainment; On-board service: Satisfaction level of On-board service; Leg room service: Satisfaction level of Leg room service; Baggage handling: Satisfaction level of baggage handling; Check-in service: Satisfaction level of Check-in service; Inflight service: Satisfaction level of inflight service; Cleanliness: Satisfaction level of Cleanliness; Departure Delay in Minutes: Minutes delayed when departure; Arrival Delay in Minutes: Minutes delayed when Arrival; and Satisfaction: Airline satisfaction level (Satisfaction, neutral or dissatisfaction) The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: CREDIT CARD CHURNING CUSTOMER ANALYSIS AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON The dataset used in this project consists of more than 10,000 customers mentioning their age, salary, marital_status, credit card limit, credit card category, etc. There are 20 features in the dataset. In the dataset, there are only 16.07% of customers who have churned. Thus, it's a bit difficult to train our model to predict churning customers. Following are the features in the dataset: 'Attrition_Flag', 'Customer_Age', 'Gender', 'Dependent_count', 'Education_Level', 'Marital_Status', 'Income_Category', 'Card_Category', 'Months_on_book', 'Total_Relationship_Count', 'Months_Inactive_12_mon', 'Contacts_Count_12_mon', 'Credit_Limit', 'Total_Revolving_Bal', 'Avg_Open_To_Buy', 'Total_Amt_Chng_Q4_Q1', 'Total_Trans_Amt', 'Total_Trans_Ct', 'Total_Ct_Chng_Q4_Q1', and 'Avg_Utilization_Ratio',. The target variable is 'Attrition_Flag'. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 4: MARKETING ANALYSIS AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON This data set was provided to students for their final project in order to test their statistical analysis skills as part of a MSc. in Business Analytics. It can be utilized for EDA, Statistical Analysis, and Visualizations. Following are the features in the dataset: ID = Customer's unique identifier; Year_Birth = Customer's birth year; Education = Customer's education level; Marital_Status = Customer's marital status; Income = Customer's yearly household income; Kidhome = Number of children in customer's household; Teenhome = Number of teenagers in customer's household; Dt_Customer = Date of customer's enrollment with the company; Recency = Number of days since customer's last purchase; MntWines = Amount spent on wine in the last 2 years; MntFruits = Amount spent on fruits in the last 2 years; MntMeatProducts = Amount spent on meat in the last 2 years; MntFishProducts = Amount spent on fish in the last 2 years; MntSweetProducts = Amount spent on sweets in the last 2 years; MntGoldProds = Amount spent on gold in the last 2 years; NumDealsPurchases = Number of purchases made with a discount; NumWebPurchases = Number of purchases made through the company's web site; NumCatalogPurchases = Number of purchases made using a catalogue; NumStorePurchases = Number of purchases made directly in stores; NumWebVisitsMonth = Number of visits to company's web site in the last month; AcceptedCmp3 = 1 if customer accepted the offer in the 3rd campaign, 0 otherwise; AcceptedCmp4 = 1 if customer accepted the offer in the 4th campaign, 0 otherwise; AcceptedCmp5 = 1 if customer accepted the offer in the 5th campaign, 0 otherwise; AcceptedCmp1 = 1 if customer accepted the offer in the 1st campaign, 0 otherwise; AcceptedCmp2 = 1 if customer accepted the offer in the 2nd campaign, 0 otherwise; Response = 1 if customer accepted the offer in the last campaign, 0 otherwise; Complain = 1 if customer complained in the last 2 years, 0 otherwise; and Country = Customer's location. The machine and deep learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 5: METEOROLOGICAL DATA ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON Meteorological phenomena are described and quantified by the variables of Earth's atmosphere: temperature, air pressure, water vapour, mass flow, and the variations and interactions of these variables, and how they change over time. Different spatial scales are used to describe and predict weather on local, regional, and global levels. The dataset used in this project consists of meteorological data with 96453 total number of data points and with 11 attributes/columns. Following are the columns in the dataset: Formatted Date; Summary; Precip Type; Temperature (C); Apparent Temperature (C); Humidity; Wind Speed (km/h); Wind Bearing (degrees); Visibility (km); Pressure (millibars); and Daily Summary. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

Machine Learning Techniques for Space Weather

Machine Learning Techniques for Space Weather
Author: Enrico Camporeale
Publisher: Elsevier
Total Pages: 454
Release: 2018-05-31
Genre: Science
ISBN: 0128117893

Machine Learning Techniques for Space Weather provides a thorough and accessible presentation of machine learning techniques that can be employed by space weather professionals. Additionally, it presents an overview of real-world applications in space science to the machine learning community, offering a bridge between the fields. As this volume demonstrates, real advances in space weather can be gained using nontraditional approaches that take into account nonlinear and complex dynamics, including information theory, nonlinear auto-regression models, neural networks and clustering algorithms. Offering practical techniques for translating the huge amount of information hidden in data into useful knowledge that allows for better prediction, this book is a unique and important resource for space physicists, space weather professionals and computer scientists in related fields. - Collects many representative non-traditional approaches to space weather into a single volume - Covers, in an accessible way, the mathematical background that is not often explained in detail for space scientists - Includes free software in the form of simple MATLAB® scripts that allow for replication of results in the book, also familiarizing readers with algorithms

Machine Learning for Sustainable Development

Machine Learning for Sustainable Development
Author: Kamal Kant Hiran
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 214
Release: 2021-07-19
Genre: Computers
ISBN: 3110702517

The book will focus on the applications of machine learning for sustainable development. Machine learning (ML) is an emerging technique whose diffusion and adoption in various sectors (such as energy, agriculture, internet of things, infrastructure) will be of enormous benefit. The state of the art of machine learning models is most useful for forecasting and prediction of various sectors for sustainable development.

International Conference on Innovative Computing and Communications

International Conference on Innovative Computing and Communications
Author: Deepak Gupta
Publisher: Springer Nature
Total Pages: 835
Release: 2022-09-22
Genre: Technology & Engineering
ISBN: 9811925356

This book includes high-quality research papers presented at the Fifth International Conference on Innovative Computing and Communication (ICICC 2022), which is held at the Shaheed Sukhdev College of Business Studies, University of Delhi, Delhi, India, on February 19–20, 2022. Introducing the innovative works of scientists, professors, research scholars, students and industrial experts in the field of computing and communication, the book promotes the transformation of fundamental research into institutional and industrialized research and the conversion of applied exploration into real-time applications.

System Modeling and Identification

System Modeling and Identification
Author: Rolf Johansson
Publisher:
Total Pages: 536
Release: 1993
Genre: Language Arts & Disciplines
ISBN:

An exploration of physical modelling and experimental issues that considers identification of structured models such as continuous-time linear systems, multidimensional systems and nonlinear systems. It gives a broad perspective on modelling, identification and its applications.

Aviation Turbulence

Aviation Turbulence
Author: Robert Sharman
Publisher: Springer
Total Pages: 529
Release: 2016-06-27
Genre: Technology & Engineering
ISBN: 331923630X

Anyone who has experienced turbulence in flight knows that it is usually not pleasant, and may wonder why this is so difficult to avoid. The book includes papers by various aviation turbulence researchers and provides background into the nature and causes of atmospheric turbulence that affect aircraft motion, and contains surveys of the latest techniques for remote and in situ sensing and forecasting of the turbulence phenomenon. It provides updates on the state-of-the-art research since earlier studies in the 1960s on clear-air turbulence, explains recent new understanding into turbulence generation by thunderstorms, and summarizes future challenges in turbulence prediction and avoidance.

Statistical Postprocessing of Ensemble Forecasts

Statistical Postprocessing of Ensemble Forecasts
Author: Stéphane Vannitsem
Publisher: Elsevier
Total Pages: 364
Release: 2018-05-17
Genre: Science
ISBN: 012812248X

Statistical Postprocessing of Ensemble Forecasts brings together chapters contributed by international subject-matter experts describing the current state of the art in the statistical postprocessing of ensemble forecasts. The book illustrates the use of these methods in several important applications including weather, hydrological and climate forecasts, and renewable energy forecasting. After an introductory section on ensemble forecasts and prediction systems, the second section of the book is devoted to exposition of the methods available for statistical postprocessing of ensemble forecasts: univariate and multivariate ensemble postprocessing are first reviewed by Wilks (Chapters 3), then Schefzik and Möller (Chapter 4), and the more specialized perspective necessary for postprocessing forecasts for extremes is presented by Friederichs, Wahl, and Buschow (Chapter 5). The second section concludes with a discussion of forecast verification methods devised specifically for evaluation of ensemble forecasts (Chapter 6 by Thorarinsdottir and Schuhen). The third section of this book is devoted to applications of ensemble postprocessing. Practical aspects of ensemble postprocessing are first detailed in Chapter 7 (Hamill), including an extended and illustrative case study. Chapters 8 (Hemri), 9 (Pinson and Messner), and 10 (Van Schaeybroeck and Vannitsem) discuss ensemble postprocessing specifically for hydrological applications, postprocessing in support of renewable energy applications, and postprocessing of long-range forecasts from months to decades. Finally, Chapter 11 (Messner) provides a guide to the ensemble-postprocessing software available in the R programming language, which should greatly help readers implement many of the ideas presented in this book. Edited by three experts with strong and complementary expertise in statistical postprocessing of ensemble forecasts, this book assesses the new and rapidly developing field of ensemble forecast postprocessing as an extension of the use of statistical corrections to traditional deterministic forecasts. Statistical Postprocessing of Ensemble Forecasts is an essential resource for researchers, operational practitioners, and students in weather, seasonal, and climate forecasting, as well as users of such forecasts in fields involving renewable energy, conventional energy, hydrology, environmental engineering, and agriculture. - Consolidates, for the first time, the methodologies and applications of ensemble forecasts in one succinct place - Provides real-world examples of methods used to formulate forecasts - Presents the tools needed to make the best use of multiple model forecasts in a timely and efficient manner