Metal Oxide Nanostructures As Gas Sensing Devices
Download Metal Oxide Nanostructures As Gas Sensing Devices full books in PDF, epub, and Kindle. Read online free Metal Oxide Nanostructures As Gas Sensing Devices ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : G. Eranna |
Publisher | : Taylor & Francis |
Total Pages | : 327 |
Release | : 2016-04-19 |
Genre | : Science |
ISBN | : 1439863415 |
Metal Oxide Nanostructures as Gas Sensing Devices explores the development of an integrated micro gas sensor that is based on advanced metal oxide nanostructures and is compatible with modern semiconductor fabrication technology. This sensor can then be used to create a compact, low-power, handheld device for analyzing air ambience.The book first c
Author | : Sher Bahadar Khan |
Publisher | : BoD – Books on Demand |
Total Pages | : 170 |
Release | : 2020-03-25 |
Genre | : Technology & Engineering |
ISBN | : 1789851599 |
This book focuses on the applications of nanomaterials in the fabrication of gas sensors. It covers recent developments of different materials used to design gas sensors, such as conducting polymers, semiconductors, as well as layered and nanosized materials. The widespread applications of various gas sensors for the detection of toxic gases are also discussed. The book provides a concise but thorough coverage of nanomaterials applications and utilization in gas sensors. In addition, it overviews recent developments in and the fabrication of gas sensors and their attributes for a broad audience, including beginners, graduate students, and specialists in both academic and industrial sectors.
Author | : Raivo Jaaniso |
Publisher | : Woodhead Publishing |
Total Pages | : 512 |
Release | : 2019-09-24 |
Genre | : Technology & Engineering |
ISBN | : 0081025602 |
Semiconductor Gas Sensors, Second Edition, summarizes recent research on basic principles, new materials and emerging technologies in this essential field. Chapters cover the foundation of the underlying principles and sensing mechanisms of gas sensors, include expanded content on gas sensing characteristics, such as response, sensitivity and cross-sensitivity, present an overview of the nanomaterials utilized for gas sensing, and review the latest applications for semiconductor gas sensors, including environmental monitoring, indoor monitoring, medical applications, CMOS integration and chemical warfare agents. This second edition has been completely updated, thus ensuring it reflects current literature and the latest materials systems and applications. - Includes an overview of key applications, with new chapters on indoor monitoring and medical applications - Reviews developments in gas sensors and sensing methods, including an expanded section on gas sensor theory - Discusses the use of nanomaterials in gas sensing, with new chapters on single-layer graphene sensors, graphene oxide sensors, printed sensors, and much more
Author | : Daniela Nunes |
Publisher | : Elsevier |
Total Pages | : 331 |
Release | : 2018-11-01 |
Genre | : Technology & Engineering |
ISBN | : 012811505X |
Metal Oxide Nanostructures: Synthesis, Properties and Applications covers the theoretical and experimental aspects related to design, synthesis, fabrication, processing, structural, morphological, optical and electronic properties on the topic. In addition, it reviews surface functionalization and hybrid materials, focusing on the advantages of these oxide nanostructures. The book concludes with the current and future prospective applications of these materials. Users will find a complete overview of all the important topics related to oxide nanostructures, from the physics of the materials, to its application. - Delves into hybrid structured metal oxides and their promising use in the next generation of electronic devices - Includes fundamental chapters on synthesis design and the properties of metal oxide nanostructures - Provides an in-depth overview of novel applications, including chromogenics, electronics and energy
Author | : Oliver Diwald |
Publisher | : John Wiley & Sons |
Total Pages | : 903 |
Release | : 2021-09-14 |
Genre | : Technology & Engineering |
ISBN | : 1119436745 |
Metal Oxide Nanoparticles A complete nanoparticle resource for chemists and industry professionals Metal oxide nanoparticles are integral to a wide range of natural and technological processes—from mineral transformation to electronics. Additionally, the fields of engineering, electronics, energy technology, and electronics all utilize metal oxide nanoparticle powders. Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces presents readers with the most relevant synthesis and formulation approaches for using metal oxide nanoparticles as functional materials. It covers common processing routes and the assessment of physical and chemical particle properties through comprehensive and complementary characterization methods. This book will serve as an introduction to nanoparticle formulation, their interface chemistry and functional properties at the nanoscale. It will also act as an in-depth resource, sharing detailed information on advanced approaches to the physical, chemical, surface, and interface characterization of metal oxide nanoparticle powders and dispersions. Addresses the application of metal oxide nanoparticles and its economic impact Examines particle synthesis, including the principles of selected bottom-up strategies Explores nanoparticle formulation—a selection of processing and application routes Discusses the significance of particle surfaces and interfaces on structure formation, stability and functional materials properties Covers metal oxide nanoparticle characterization at different length scales With this valuable resource, academic researchers, industrial chemists, and PhD students can all gain insight into the synthesis, properties, and applications of metal oxide nanoparticles.
Author | : Nicolae Barsan |
Publisher | : Elsevier |
Total Pages | : 295 |
Release | : 2018-10-17 |
Genre | : Technology & Engineering |
ISBN | : 0128112255 |
Gas Sensors Based on Conducting Metal Oxides: Basic Understanding, Technology and Applications focuses on two distinct types of gas sensors based on conducting metal oxides. Ion conduction, applied in so-called solid-state electrolytic sensors for one, and electronic conduction used in semiconductivity gas sensors for the other. The well-known ?–probe, a key component to optimize combustion in car engines, is an example of the former type, and the in-cabin car air-quality control SnO2 and WO2 sensor array stands for the semiconductivity type. Chapters cover basic aspects of functioning principles and describe the technologies and challenges of present and future sensors. - Provides reader background and context on sensors, principles, fabrication and applications - Includes chapters on specific technological applications, such as exhaust sensors, environmental sensors, explosive gases alarms and more - Presents a structured presentation that allows for quick reference of vital information
Author | : Sabu Thomas |
Publisher | : Springer Nature |
Total Pages | : 467 |
Release | : 2020-06-12 |
Genre | : Technology & Engineering |
ISBN | : 9811548102 |
This book provides a comprehensive overview of the current state-of-art in oxide nanostructures, carbon nanostructures and 2D materials fabrication. It covers mimicking of sensing mechanisms and applications in gas sensors. It focuses on gas sensors based on functional nanostructured materials, especially related to issues of sensitivity, selectivity, and temperature dependency for sensors. It covers synthesis, properties, and current gas sensing tools and discusses the necessity for miniaturized sensors. This book will be of use to senior undergraduate and graduate students, professionals, and researchers in the field of solid-state physics, materials science, surface science and chemical engineering.
Author | : Hamida Hallil |
Publisher | : John Wiley & Sons |
Total Pages | : 240 |
Release | : 2020-05-12 |
Genre | : Technology & Engineering |
ISBN | : 1119587344 |
Provides an introduction to the topic of smart chemical sensors, along with an overview of the state of the art based on potential applications This book presents a comprehensive overview of chemical sensors, ranging from the choice of material to sensor validation, modeling, simulation, and manufacturing. It discusses the process of data collection by intelligent techniques such as deep learning, multivariate analysis, and others. It also incorporates different types of smart chemical sensors and discusses each under a common set of sub-sections so that readers can fully understand the advantages and disadvantages of the relevant transducers—depending on the design, transduction mode, and final applications. Smart Sensors for Environmental and Medical Applications covers all major aspects of the field of smart chemical sensors, including working principle and related theory, sensor materials, classification of respective transducer type, relevant fabrication processes, methods for data analysis, and suitable applications. Chapters address field effect transistors technologies for biological and chemical sensors, mammalian cell–based electrochemical sensors for label-free monitoring of analytes, electronic tongues, chemical sensors based on metal oxides, metal oxide (MOX) gas sensor electronic interfaces, and more. Addressing the limitations and challenges in obtaining state-of-the-art smart biochemical sensors, this book: Balances the fundamentals of sensor design, fabrication, characterization, and analysis with advanced methods Categorizes sensors into sub-types and describes their working, focusing on prominent applications Describes instrumentation and IoT networking methods of chemical transducers that can be used for inexpensive, accurate detection in commercialized smart chemical sensors Covers monitoring of food spoilage using polydiacetylene- and liposome-based sensors; smart and intelligent E-nose for sensitive and selective chemical sensing applications; odor sensing system; and microwave chemical sensors Smart Sensors for Environmental and Medical Applications is an important book for senior-level undergraduate and graduate students learning about this high-performance technology and its many applications. It will also inform practitioners and researchers involved in the creation and use of smart sensors.
Author | : Satyabrata Mohapatra |
Publisher | : Elsevier |
Total Pages | : 675 |
Release | : 2018-10-11 |
Genre | : Technology & Engineering |
ISBN | : 0128141352 |
Noble Metal-Metal Oxide Hybrid Nanoparticles: Fundamentals and Applications sets out concepts and emerging applications of hybrid nanoparticles in biomedicine, antibacterial, energy storage and electronics. The hybridization of noble metals (Gold, Silver, Palladium and Platinum) with metal-oxide nanoparticles exhibits superior features when compared to individual nanoparticles. In some cases, metal oxides act as semiconductors, such as nano zinc oxide or titanium oxide nanoparticles, where their hybridization with silver nanoparticles, enhanced significantly their photocatalytic efficiency. The book highlights how such nanomaterials are used for practical applications. - Examines the properties of metal-metal oxide hybrid nanoparticles that make them so adaptable - Explores the mechanisms by which nanoparticles interact with each other, showing how these can be exploited for practical applications - Shows how metal oxide hybrid nanomaterials are used in a range of industry sectors, including energy, the environment and healthcare
Author | : Magnus Willander |
Publisher | : CRC Press |
Total Pages | : 225 |
Release | : 2014-07-22 |
Genre | : Science |
ISBN | : 9814411345 |
Zinc oxide (ZnO) in its nanostructured form is emerging as a promising material with great potential for the development of many smart electronic devices. This book presents up-to-date information about various synthesis methods to obtain device-quality ZnO nanostructures. It describes both high-temperature (over 100 C) and low-temperature (under