Applications of Metal-Organic Frameworks and Their Derived Materials

Applications of Metal-Organic Frameworks and Their Derived Materials
Author: Inamuddin
Publisher: John Wiley & Sons
Total Pages: 496
Release: 2020-06-10
Genre: Science
ISBN: 1119650984

Metal–organic frameworks (MOFs) are porous crystalline polymers con­structed by metal sites and organic building blocks. Since the discovery of MOFs in the 1990s, they have received tremendous research attention for various applications due to their high surface area, controllable mor­phology, tunable chemical properties, and multifunctionalities, including MOFs as precursors and self-sacrificing templates for synthesizing metal oxides, heteroatom-doped carbons, metal-atoms encapsulated carbons, and others. Thus, awareness and knowledge about MOFs and their derived nanomaterials with conceptual understanding are essential for the advanced material community. This breakthrough new volume aims to explore down-to-earth applications in fields such as bio­medical, environmental, energy, and electronics. This book provides an overview of the structural and fundamental properties, synthesis strate­gies, and versatile applications of MOFs and their derived nanomaterials. It gives an updated and comprehensive account of the research in the field of MOFs and their derived nanomaterials. Whether as a reference for industry professionals and nanotechnologists or for use in the classroom for graduate and postgraduate students, faculty members, and research and development specialists working in the area of inorganic chemistry, materials science, and chemical engineering, this is a must-have for any library.

Fabrication of Metal–Organic Framework Derived Nanomaterials and Their Electrochemical Applications

Fabrication of Metal–Organic Framework Derived Nanomaterials and Their Electrochemical Applications
Author: Wei Xia
Publisher: Springer
Total Pages: 148
Release: 2018-04-03
Genre: Technology & Engineering
ISBN: 9811068119

This thesis systematically introduces readers to a new metal-organic framework approach to fabricating nanostructured materials for electrochemical applications. Based on the metal-organic framework (MOF) approach, it also demonstrates the latest ideas on how to create optimal MOF and MOF-derived nanomaterials for electrochemical reactions under controlled conditions. The thesis offers a valuable resource for researchers who want to understand electrochemical reactions at nanoscale and optimize materials from rational design to achieve enhanced electrochemical performance. It also serves as a useful reference guide to fundamental research on advanced electrochemical energy storage materials and the synthesis of nanostructured materials.

Metal-Organic Frameworks (MOFs) for Environmental Applications

Metal-Organic Frameworks (MOFs) for Environmental Applications
Author: Sujit K. Ghosh
Publisher: Elsevier
Total Pages: 465
Release: 2019-06-07
Genre: Science
ISBN: 0128146346

Metal-Organic Frameworks for Environmental Applications examines this important topic, looking at potential materials and methods for the remediation of pressing pollution issues, such as heavy-metal contaminants in water streams, radioactive waste disposal, marine oil-spillage, the treatment of textile and dye industry effluents, the clean-up of trace amounts of explosives in land and water, and many other topics. This survey of the cutting-edge research and technology of MOFs is an invaluable resource for researchers working in inorganic chemistry and materials science, but it is also ideal for graduate students studying MOFs and their applications. - Examines the applications of metal-organic frameworks for the remediation of environmental pollutants - Features leading experts who research the applications of MOFs from around the world, including contributions from the United States, India and China - Explores possible solutions to some of today's most pressing environmental challenges, such as heavy-metal contamination in bodies of water, oil spills and clean-up of explosives hidden in land and water - Provides an excellent reference for researchers and graduate students studying in the areas of inorganic chemistry, materials chemistry and environmental science

Metal-Organic Frameworks for Biomedical Applications

Metal-Organic Frameworks for Biomedical Applications
Author: Masoud Mozafari
Publisher: Woodhead Publishing
Total Pages: 584
Release: 2020-03-03
Genre: Technology & Engineering
ISBN: 0128169842

Metal-Organic Frameworks for Biomedical Applications is a comprehensive, authoritative reference that offers a substantial and complete treatment of published results that have yet to be critically reviewed. It offers a summary of current research and provides in-depth understanding of the role of metal-organic frameworks in biomedical engineering. The title consists of twenty-two chapters presented by leading international researchers in the field. Chapters are arranged by target-application in biomedical engineering, allowing medical and pharmaceutic specialists to translate current materials and engineering science on metal-organic frameworks into their work.

Metal-Organic Framework Materials

Metal-Organic Framework Materials
Author: Leonard R. MacGillivray
Publisher: John Wiley & Sons
Total Pages: 1210
Release: 2014-09-19
Genre: Science
ISBN: 1118931580

Metal-Organic Frameworks (MOFs) are crystalline compounds consisting of rigid organic molecules held together and organized by metal ions or clusters. Special interests in these materials arise from the fact that many are highly porous and can be used for storage of small molecules, for example H2 or CO2. Consequently, the materials are ideal candidates for a wide range of applications including gas storage, separation technologies and catalysis. Potential applications include the storage of hydrogen for fuel-cell cars, and the removal and storage of carbon dioxide in sustainable technical processes. MOFs offer the inorganic chemist and materials scientist a wide range of new synthetic possibilities and open the doors to new and exciting basic research. Metal-Organic Frameworks Materials provides a solid basis for the understanding of MOFs and insights into new inorganic materials structures and properties. The volume also reflects progress that has been made in recent years, presenting a wide range of new applications including state-of-the art developments in the promising technology for alternative fuels. The comprehensive volume investigates structures, symmetry, supramolecular chemistry, surface engineering, recognition, properties, and reactions. The content from this book will be added online to the Encyclopedia of Inorganic and Bioinorganic Chemistry: http://www.wileyonlinelibrary.com/ref/eibc

2D Nanomaterials for Energy Applications

2D Nanomaterials for Energy Applications
Author: Spyridon Zafeiratos
Publisher: Elsevier
Total Pages: 353
Release: 2019-11-22
Genre: Technology & Engineering
ISBN: 0128168897

2D Nanomaterials for Energy Applications: Graphene and Beyond discusses the current state-of-the art of 2D nanomaterials used in energy-related applications. Sections cover nanogenerators, hydrogen storage and theoretical design. Each chapter focuses on a different energy application, thus allowing readers to gain a greater understanding of the most promising 2D materials in the field. The book's ultimate goal lies in describing how each energy technology is beneficial, hence it provides a valuable reference source for materials scientists and engineers. The physical and chemical properties of 2D materials can be effectively tuned through different strategies, such as controlling dimensions, the crystallographic structure and defects, or doping with heteroatoms. This flexibility facilitates the design of 2D materials for dedicated applications in the field of energy conversion and storage. - Offers a single source for the major practical applications of 2D materials in the field of energy conversion and storage - Explores how 2D materials are being used to create new, more efficient industrial energy products and devices - Compares a variety of 2D materials, showing how the properties of a range of these materials make them beneficial for specific energy applications

The Chemistry of Metal-Organic Frameworks

The Chemistry of Metal-Organic Frameworks
Author: Stefan Kaskel
Publisher: John Wiley & Sons
Total Pages: 904
Release: 2016-06-14
Genre: Science
ISBN: 3527693084

Providing vital knowledge on the design and synthesis of specific metal-organic framework (MOF) classes as well as their properties, this ready reference summarizes the state of the art in chemistry. Divided into four parts, the first begins with a basic introduction to typical cluster units or coordination geometries and provides examples of recent and advanced MOF structures and applications typical for the respective class. Part II covers recent progress in linker chemistries, while special MOF classes and morphology design are described in Part III. The fourth part deals with advanced characterization techniques, such as NMR, in situ studies, and modelling. A final unique feature is the inclusion of data sheets of commercially available MOFs in the appendix, enabling experts and newcomers to the field to select the appropriate MOF for a desired application. A must-have reference for chemists, materials scientists, and engineers in academia and industry working in the field of catalysis, gas and water purification, energy storage, separation, and sensors.

Introduction to Reticular Chemistry

Introduction to Reticular Chemistry
Author: Omar M. Yaghi
Publisher: John Wiley & Sons
Total Pages: 742
Release: 2019-03-22
Genre: Science
ISBN: 3527821104

A concise introduction to the chemistry and design principles behind important metal-organic frameworks and related porous materials Reticular chemistry has been applied to synthesize new classes of porous materials that are successfully used for myraid applications in areas such as gas separation, catalysis, energy, and electronics. Introduction to Reticular Chemistry gives an unique overview of the principles of the chemistry behind metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and zeolitic imidazolate frameworks (ZIFs). Written by one of the pioneers in the field, this book covers all important aspects of reticular chemistry, including design and synthesis, properties and characterization, as well as current and future applications Designed to be an accessible resource, the book is written in an easy-to-understand style. It includes an extensive bibliography, and offers figures and videos of crystal structures that are available as an electronic supplement. Introduction to Reticular Chemistry: -Describes the underlying principles and design elements for the synthesis of important metal-organic frameworks (MOFs) and related materials -Discusses both real-life and future applications in various fields, such as clean energy and water adsorption -Offers all graphic material on a companion website -Provides first-hand knowledge by Omar Yaghi, one of the pioneers in the field, and his team. Aimed at graduate students in chemistry, structural chemists, inorganic chemists, organic chemists, catalytic chemists, and others, Introduction to Reticular Chemistry is a groundbreaking book that explores the chemistry principles and applications of MOFs, COFs, and ZIFs.

Metal Oxides in Supercapacitors

Metal Oxides in Supercapacitors
Author: Deepak P. Dubal
Publisher: Elsevier
Total Pages: 294
Release: 2017-07-10
Genre: Technology & Engineering
ISBN: 0128104651

Metal Oxides in Supercapacitors addresses the fundamentals of metal oxide-based supercapacitors and provides an overview of recent advancements in this area. Metal oxides attract most of the materials scientists use due to their excellent physico-chemical properties and stability in electrochemical systems. This justification for the usage of metal oxides as electrode materials in supercapacitors is their potential to attain high capacitance at low cost. After providing the principles, the heart of the book discusses recent advances, including: binary metal oxides-based supercapacitors, nanotechnology, ternary metal oxides, polyoxometalates and hybrids. Moreover, the factors affecting the charge storage mechanism of metal oxides are explored in detail. The electrolytes, which are the soul of supercapacitors and a mostly ignored character of investigations, are also exposed in depth, as is the fabrication and design of supercapacitors and their merits and demerits. Lastly, the market status of supercapacitors and a discussion pointing out the future scope and directions of next generation metal oxides based supercapacitors is explored, making this a comprehensive book on the latest, cutting-edge research in the field. - Explores the most recent advances made in metal oxides in supercapacitors - Discusses cutting-edge nanotechnology for supercapacitors - Includes fundamental properties of metal oxides in supercapacitors that can be used to guide and promote technology development - Contains contributions from leading international scientists active in supercapacitor research and manufacturing