Mechanisms for Prolonging Network Lifetime in Wireless Sensor Networks

Mechanisms for Prolonging Network Lifetime in Wireless Sensor Networks
Author: Yinying Yang
Publisher:
Total Pages: 348
Release: 2010
Genre: Ad hoc networks (Computer networks)
ISBN:

Sensors are used to monitor and control the physical environment. A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using hop-by-hop communication. Once a sink receives sensed data, it processes and forwards it to the users. Sensors are usually battery powered and it is hard to recharge them. It will take a limited time before they deplete their energy and become unfunctional. Optimizing energy consumption to prolong network lifetime is an important issue in wireless sensor networks. In mobile sensor networks, sensors can self-propel via springs [14], wheels [20], or they can be attached to transporters, such as robots [20] and vehicles [36]. In static sensor networks with uniform deployment (uniform density), sensors closest to the sink will die first, which will cause uneven energy consumption and limitation of network life- time. In the dissertation, the nonuniform density is studied and analyzed so that the energy consumption within the monitored area is balanced and the network lifetime is prolonged. Several mechanisms are proposed to relocate the sensors after the initial deployment to achieve the desired density while minimizing the total moving cost. Using mobile relays for data gathering is another energy efficient approach. Mobile sensors can be used as ferries, which carry data to the sink for static sensors so that expensive multi-hop communication and long distance communication are reduced. In this thesis, we propose a mobile relay based routing protocol that considers both energy efficiency and data delivery delay. It can be applied to both event-based reporting and periodical report applications. Another mechanism used to prolong network lifetime is sensor scheduling. One of the major components that consume energy is the radio. One method to conserve energy is to put sensors to sleep mode when they are not actively participating in sensing or data relaying. This dissertation studies sensor scheduling mechanisms for composite event detection. It chooses a set of active sensors to perform sensing and data relaying, and all other sensors go to sleep to save energy. After some time, another set of active sensors is chosen. Thus sensors work alternatively to prolong network lifetime.

Mobile, Wireless and Sensor Networks

Mobile, Wireless and Sensor Networks
Author: Amine Dahane
Publisher: CRC Press
Total Pages: 218
Release: 2019-07-01
Genre: Computers
ISBN: 1351190741

Wireless networking covers a variety of topics involving many challenges. The main concern of clustering approaches for mobile wireless sensor networks (WSNs) is to prolong the battery life of the individual sensors and the network lifetime. For a successful clustering approach, the need of a powerful mechanism to safely elect a cluster head remains a challenging task in many research works that take into account the mobility of the network. In Mobile, Wireless and Sensor Networks: A Clustering Algorithm for Energy Efficiency and Safety, the authors use an approach based on computing of the weight of each node in the network as the proposed technique to deal with this problem. They present a virtual laboratory platform (VLP) of baptized mercury, allowing students and researchers to make practical work (PW) on different aspects of mobile wireless sensor networks. The authors’ choice of WSNs is motivated mainly by the use of real experiments needed in most college courses on WSNs. These usual experiments, however, require an expensive investment and many nodes in the classroom. The platform presented here aims at showing the feasibility, the flexibility, and the reduced cost using the authors’ approach. The authors demonstrate the performance of the proposed algorithms that contribute to the familiarization of the learners in the field of WSNs. The book will be a valuable resource for students in networking studies as well as for faculty and researchers in this area.

Prolonging Network Lifetime of Clustered Wireless Sensor Networks

Prolonging Network Lifetime of Clustered Wireless Sensor Networks
Author: Muattaz Elaneizi
Publisher:
Total Pages: 77
Release: 2008
Genre:
ISBN: 9780494436424

Wireless Sensor Networking is envisioned as an economically viable paradigm and a promising technology because of its ability to provide a variety of services, such as intrusion detection, weather monitoring, security, tactical surveillance, and disaster management. The services provided by wireless senor networks (WSNs) are based on collaboration among small energy-constrained sensor nodes. The large deployment of WSNs and the need for energy efficient strategy necessitate efficient organization of the network topology for the purpose of balancing the load and prolonging the network lifetime. Clustering has been proven to provide the required scalability and prolong the network lifetime. Due to the bottle neck phenomena in WSNs, a sensor network loses its connectivity with the base station and the remaining energy resources of the functioning nodes are wasted. This thesis highlights some of the research done to prolong the network lifetime of wireless sensor networks and proposes a solution to overcome the bottle neck phenomena in cluster-based sensor networks. Transmission tuning algorithm for a cluster-based WSNs is proposed based on our modeling of the extra burden of the sensor nodes that have direct communication with the base station. Under this solution, a wireless sensor network continues to operate with minimum live nodes, hence increase the longevity of the system. An information theoretic metric is proposed as a cluster head selection criteria for breaking ties among competing clusters, hence as means to decrease node reaffiliation and hence increasing the stability of the clusters, and prolonging the network lifetime. This proposed metric attempts to predict undesired mobility caused by erosion.

Wireless Sensor Networks

Wireless Sensor Networks
Author: Jun Zheng
Publisher: John Wiley & Sons
Total Pages: 521
Release: 2009-10-27
Genre: Technology & Engineering
ISBN: 0470443510

Learn the fundamental concepts, major challenges, and effective solutions in wireless sensor networking This book provides a comprehensive and systematic introduction to the fundamental concepts, major challenges, and effective solutions in wireless sensor networking (WSN). Distinguished from other books, it focuses on the networking aspects of WSNs and covers the most important networking issues, including network architecture design, medium access control, routing and data dissemination, node clustering, node localization, query processing, data aggregation, transport and quality of service, time synchronization, network security, and sensor network standards. With contributions from internationally renowned researchers, Wireless Sensor Networks expertly strikes a balance between fundamental concepts and state-of-the-art technologies, providing readers with unprecedented insights into WSNs from a networking perspective. It is essential reading for a broad audience, including academic researchers, research engineers, and practitioners in industry. It is also suitable as a textbook or supplementary reading for electrical engineering, computer engineering, and computer science courses at the graduate level.

Extending Network Lifetime in Wireless Sensor Networks Using Power-aware Geographic Routing

Extending Network Lifetime in Wireless Sensor Networks Using Power-aware Geographic Routing
Author: Amalia Tsanaka
Publisher:
Total Pages:
Release: 2012
Genre:
ISBN:

Wireless Sensor Networks (WSNs) use geographic routing to deliver measurement data to one or more sink nodes. In employing geographic routing, where data packets are forwarded along approximate geodesic (shortest) paths, WSNs can distribute the forwarding task unevenly between nodes. Nodes closest to the data sinks, or the geographic centre of the network coverage area, as well as nodes at the periphery of void areas, carry significantly more traffic. Consequently, their batteries deplete at a faster rate than the remaining nodes, causing void areas to form and grow, thus decreasing the overall network lifetime below its potential value. This thesis proposes a novel power-aware routing protocol inspired by the propagation of light-rays in graded-index media, aiming to balance the load over the network and to extend the overall network lifetime with minimal, local coordination overheads only. The idea has been implemented in a custom-built network simulator, where two versions of the algorithm were constructed: Curvy routing, which uses a fixed refractive index distribution and Energy Aware routing, which takes into account energy level changes to update the refractive index. Comparisons have been made between those, a baseline protocol and existing solutions in the literature, where simulation results have shown that the proposed protocols perform better in sparse networks, providing a realistic and plausible solution which can be applied successfully in real-life scenarios.

Wireless Sensor Networks

Wireless Sensor Networks
Author: Siva Yellampalli
Publisher: BoD – Books on Demand
Total Pages: 346
Release: 2021-09-15
Genre: Technology & Engineering
ISBN: 1838809090

Wireless sensor networks (WSNs) consist of tiny sensors capable of sensing, computing, and communicating. Due to advances in semiconductors, networking, and material science technologies, it is now possible to deploy large-scale WSNs. The advancement in these technologies has not only decreased the deployment and maintenance costs of networks but has also increased the life of networks and made them more rugged. As WSNs become more reliable with lower maintenance costs, they are being deployed and used across various sectors for multiple applications. This book discusses the applications, challenges, and design and deployment techniques of WSNs.

Guide to Wireless Sensor Networks

Guide to Wireless Sensor Networks
Author: Sudip Misra
Publisher: Springer Science & Business Media
Total Pages: 725
Release: 2009-05-29
Genre: Computers
ISBN: 1848822189

Overview and Goals Wireless communication technologies are undergoing rapid advancements. The last few years have experienced a steep growth in research in the area of wireless sensor networks (WSNs). In WSNs, communication takes place with the help of spatially distributedautonomoussensornodesequippedtosensespeci?cinformation. WSNs, especially the ones that have gained much popularity in the recent years, are, ty- cally, ad hoc in nature and they inherit many characteristics/features of wireless ad hoc networks such as the ability for infrastructure-less setup, minimal or no reliance on network planning, and the ability of the nodes to self-organize and self-con?gure without the involvement of a centralized network manager, router, access point, or a switch. These features help to set up WSNs fast in situations where there is no existing network setup or in times when setting up a ?xed infrastructure network is considered infeasible, for example, in times of emergency or during relief - erations. WSNs ?nd a variety of applications in both the military and the civilian population worldwide such as in cases of enemy intrusion in the battle?eld, object tracking, habitat monitoring, patient monitoring, ?re detection, and so on. Even though sensor networks have emerged to be attractive and they hold great promises for our future, there are several challenges that need to be addressed. Some of the well-known challenges are attributed to issues relating to coverage and deployment, scalability, quality-of-service, size, computational power, energy ef?ciency, and security.

Advances in Electric and Electronics

Advances in Electric and Electronics
Author: Wensong Hu
Publisher: Springer Science & Business Media
Total Pages: 811
Release: 2012-03-13
Genre: Technology & Engineering
ISBN: 3642287441

This volume contains 108 full length papers presented at the 2nd International Conference on Electric and Electronics (EEIC 2012), held on April 21-22 in Sanya, China, which brings together researchers working in many different areas of education and learning to foster international collaborations and exchange of new ideas. This volume can be divided into two sections on the basis of the classification of manuscripts considered: the first section deals with Electric and the second section with Electronics.