Mechanics Of Porous Continua
Download Mechanics Of Porous Continua full books in PDF, epub, and Kindle. Read online free Mechanics Of Porous Continua ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Olivier Coussy |
Publisher | : John Wiley & Sons |
Total Pages | : 246 |
Release | : 2011-06-28 |
Genre | : Science |
ISBN | : 1119956161 |
Mechanics and Physics of Porous Solids addresses the mechanics and physics of deformable porous materials whose porous space is filled by one or several fluid mixtures interacting with the solid matrix. Coussy uses the language of thermodynamics to frame the discussion of this topic and bridge the gap between physicists and engineers, and organises the material in such a way that individual phases are explored, followed by coupled problems of increasing complexity. This structure allows the reader to build a solid understanding of the physical processes occurring in the fluids and then porous solids. Mechanics and Physics of Porous Solids offers a critical reference on the physics of multiphase porous materials - key reading for engineers and researchers in structural and material engineering, concrete, wood and materials science, rock and soil mechanics, mining and oil prospecting, biomechanics.
Author | : Olivier Coussy |
Publisher | : Wiley |
Total Pages | : 472 |
Release | : 1995-12-05 |
Genre | : Technology & Engineering |
ISBN | : 9780471952671 |
This book provides a unified and systematic continuum approach for engineers and applied physicists working on the modelling of porous media. Self-contained, it sets out—from a macroscopic point of view—the main concepts and results of deformable porous media subject to the flow of one or several fluids. The theory presented includes developments in the areas of thermodynamics, poroelastoplasticity, poroviscoplasticity, wave propagation and surfaces of discontinuity, boundary value problems and numerical methods, as well as chemico-mechanical couplings. It can be used for numerous diversified applications in geophysics, civil engineering, biomechanics, material science, etc.
Author | : Olivier Coussy |
Publisher | : John Wiley & Sons |
Total Pages | : 312 |
Release | : 2004-03-05 |
Genre | : Technology & Engineering |
ISBN | : 047009270X |
Modelling and predicting how porous media deform when subjected to external actions and physical phenomena, including the effect of saturating fluids, are of importance to the understanding of geophysics and civil engineering (including soil and rock mechanics and petroleum engineering), as well as in newer areas such as biomechanics and agricultural engineering. Starting from the highly successful First Edition, Coussy has completely re-written Mechanics of Porous Continua/Poromechanics to include: New material for: Partially saturated porous media Reactive porous media Macroscopic electrical effects A single theoretical framework to the subject to explain the interdisciplinary nature of the subject Exercises at the end of each chapter to aid understanding The unified approach taken by this text makes it a valuable addition to the bookshelf of every PhD student and researcher in civil engineering, petroleum engineering, geophysics, biomechanics and material science.
Author | : Reint de Boer |
Publisher | : Springer Science & Business Media |
Total Pages | : 626 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 3642596371 |
This is a consistent treatment of the material-independent fundamental equations of the theory of porous media, formulating constitutive equations for frictional materials in the elastic and plastic range, while tracing the historical development of the theory. Thus, for the first time, a unique treatment of fluid-saturated porous solids is presented, including an explanation of the corresponding theory by way of its historical progression, and a thorough description of its current state.
Author | : M.B. Rubin |
Publisher | : Springer Nature |
Total Pages | : 284 |
Release | : 2020-10-11 |
Genre | : Science |
ISBN | : 3030577767 |
This book focuses on the need for an Eulerian formulation of constitutive equations. After introducing tensor analysis using both index and direct notation, nonlinear kinematics of continua is presented. The balance laws of the purely mechanical theory are discussed along with restrictions on constitutive equations due to superposed rigid body motion. The balance laws of the thermomechanical theory are discussed and specific constitutive equations are presented for: hyperelastic materials; elastic–inelastic materials; thermoelastic–inelastic materials with application to shock waves; thermoelastic–inelastic porous materials; and thermoelastic–inelastic growing biological tissues.
Author | : |
Publisher | : Academic Press |
Total Pages | : 339 |
Release | : 1962-01-01 |
Genre | : Technology & Engineering |
ISBN | : 0080563856 |
Advances in Applied Mechanics
Author | : Krzysztof Wilmanski |
Publisher | : Springer Science & Business Media |
Total Pages | : 284 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 3642589340 |
The notion of continuum thermodynamics, adopted in this book, is primarily understood as a strategy for development of continuous models of various physical systems. The examples of such a strategy presented in the book have both the classical character (e. g. thermoelastic materials, viscous fluids, mixtures) and the extended one (ideal gases, Maxwellian fluids, thermoviscoelastic solids etc. ). The latter has been limited intentionally to non-relativistic models; many important relativistic applications of the true extended thermodynamics will not be considered but can be found in the other sources. The notion of extended thermodynamics is also adopted in a less strict sense than suggested by the founders. For instance, in some cases we allow the constitutive dependence not only on the fields themselves but also on some derivatives. In this way, the new thermodynamical models may have some features of the usual nonequilibrium models and some of those of the extended models. This deviation from the strategy of extended thermodynamics is motivated by practical aspects; frequently the technical considerations of extended thermodynamics are so involved that one can no longer see important physical properties of the systems. This book has a different form from that usually found in books on continuum mechanics and continuum thermodynamics. The presentation of the formal structure of continuum thermodynamics is not always as rigorous as a mathematician might anticipate and the choice of physical subjects is too disperse to make a physicist happy.
Author | : Kaplan S. Basniev |
Publisher | : John Wiley & Sons |
Total Pages | : 515 |
Release | : 2012-11-07 |
Genre | : Technology & Engineering |
ISBN | : 1118533666 |
The mechanics of fluid flow is a fundamental engineering discipline explaining both natural phenomena and human-induced processes, and a thorough understanding of it is central to the operations of the oil and gas industry. This book, written by some of the world’s best-known and respected petroleum engineers, covers the concepts, theories, and applications of the mechanics of fluid flow for the veteran engineer working in the field and the student, alike. It is a must-have for any engineer working in the oil and gas industry.
Author | : A. Ian Murdoch |
Publisher | : Cambridge University Press |
Total Pages | : 439 |
Release | : 2012-10-22 |
Genre | : Science |
ISBN | : 1139788787 |
Ian Murdoch's Physical Foundations of Continuum Mechanics will interest engineers, mathematicians, and physicists who study the macroscopic behaviour of solids and fluids or engage in molecular dynamical simulations. In contrast to standard works on the subject, Murdoch's book examines physical assumptions implicit in continuum modelling from a molecular perspective. In so doing, physical interpretations of concepts and fields are clarified by emphasising both their microscopic origin and sensitivity to scales of length and time. Murdoch expertly applies this approach to theories of mixtures, generalised continua, fluid flow through porous media, and systems whose molecular content changes with time. Elements of statistical mechanics are included, for comparison, and two extensive appendices address relevant mathematical concepts and results. This unique and thorough work is an authoritative reference for both students and experts in the field.
Author | : Wolfgang Ehlers |
Publisher | : Springer Science & Business Media |
Total Pages | : 459 |
Release | : 2013-03-09 |
Genre | : Technology & Engineering |
ISBN | : 3662049996 |
The present volume offers a state-of-the-art report on the various recent sci entific developments in the Theory of Porous Media (TPM) comprehending the basic theoretical concepts in continuum mechanics on porous and mul tiphasic materials as well as the wide range of experimental and numerical applications. Following this, the volume does not only address the sophisti cated reader but also the interested beginner in the area of Porous Media by presenting a collection of articles. These articles written by experts in the field concern the fundamental approaches to multiphasic and porous materials as well as various applications to engineering problems. In many branches of engineering just as in applied natural sciences like bio- and chemomechanics, one often has to deal with continuum mechanical problems which cannot be uniquely classified within the well-known disci plines of either "solid mechanics" or "fluid mechanics". These problems, characterized by the fact that they require a unified treatment of volumetri cally coupled solid-fluid aggregates; basically fall into the categories of either mixtures or porous media. Following this, there is a broad variety of problems ranging in this category as for example the investigation of reacting fluid mix tures or solid-fluid suspensions as well as the investigation of the coupled solid deformation and pore-fluid flow behaviour of liquid- and gas-saturated porous solid skeleton materials like geomaterials (soil, rock, concrete, etc. ), polymeric and metallic foams or biomaterials (hard and soft tissues, etc).