Mechanical Properties Of Ice
Download Mechanical Properties Of Ice full books in PDF, epub, and Kindle. Read online free Mechanical Properties Of Ice ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : W. F. Weeks |
Publisher | : |
Total Pages | : 100 |
Release | : 1967 |
Genre | : Ice mechanics |
ISBN | : |
The review discusses the state of thinking of each of the main national groups investigating sea ice and gives an overall appraisal of the field as a whole. Emphasis is placed on (1) the physical basis for interpreting sea ice strength (phase relations, air volume, and structural considerations), (2) theoretical considerations (strength models, air bubbles and salt reinforcement, and interrelations between growth conditions and strength), (3) experimental results (tensile, flexural, shear, and compressive strength, elastic modulus, shear modulus and Poisson's ratio, time dependent effects, and creep), and (4) plate characteristics. The paper includes a review of problems in sea ice investigations, relates the chemical, crystallographic, mechanical, and physical aspects involved, and concludes by showing how to utilize this knowledge to solve practical problems. (Author).
Author | : Victor F. Petrenko |
Publisher | : OUP Oxford |
Total Pages | : 390 |
Release | : 1999-08-19 |
Genre | : Science |
ISBN | : 0191581348 |
Ice is one of the most abundant and environmentally important materials on Earth, and its unique and intriguing physical properties present fascinating areas of study for a wide variety of researchers. This book is about the physics of ice, by which is meant the properties of the material itself and the ways in which these properties are interpreted in terms of water molecules and crystalline structure. Although ice has a simple crystal structure its hydrogen bonding results in unique properties, which continue to be the subject of active research. In this book the physical principles underlying the properties of ice are carefully developed at a level aimed at pure and applied researchers in the field. Important topics like current understandings of the electrical, mechanical, and surface properties, and the occurrence of many different crystalline phases are developed in a coherent way for the first time. An extensive reference list and numerous illustrations add to the usefulness and readability of the text.
Author | : K. L. Mittal |
Publisher | : John Wiley & Sons |
Total Pages | : 704 |
Release | : 2020-12-15 |
Genre | : Technology & Engineering |
ISBN | : 1119640377 |
This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.
Author | : Arthur H. Lachenbruch |
Publisher | : Geological Society of America |
Total Pages | : 81 |
Release | : 1962 |
Genre | : Frozen ground |
ISBN | : 0813720702 |
Author | : F. Donald Haynes |
Publisher | : |
Total Pages | : 40 |
Release | : 1977 |
Genre | : Frozen ground |
ISBN | : |
Author | : Ryszard Staroszczyk |
Publisher | : Springer |
Total Pages | : 344 |
Release | : 2018-12-29 |
Genre | : Science |
ISBN | : 3030030385 |
This book presents the concepts and tools of ice mechanics, together with examples of their application in the fields of glaciology, climate research and civil engineering in cold regions. It starts with an account of the most important physical properties of sea and polar ice treated as an anisotropic polycrystalline material, and reviews relevant field observations and experimental measurements. The book focuses on theoretical descriptions of the material behaviour of ice in different stress, deformation and deformation-rate regimes on spatial scales ranging from single ice crystals, those typical in civil engineering applications, up to scales of thousands of kilometres, characteristic of large, grounded polar ice caps in Antarctica and Greenland. In addition, it offers a range of numerical formulations based on either discrete (finite-element, finite-difference and smoothed particle hydrodynamics) methods or asymptotic expansion methods, which have been used by geophysicists, theoretical glaciologists and civil engineers to simulate the behaviour of ice in a number of problems of importance to glaciology and civil engineering, and discusses the results of these simulations. The book is intended for scientists, engineers and graduate students interested in mathematical and numerical modelling of a wide variety of geophysical and civil engineering problems involving natural ice.
Author | : Peter Victor Hobbs |
Publisher | : |
Total Pages | : 856 |
Release | : 2010-05-06 |
Genre | : Science |
ISBN | : 019958771X |
This monograph provides an account of the physics and chemistry of ice. Informed by research from physicists, chemists and glaciologists, the book places emphasis on the basic physical properties of ice, the modes of nucleation and growth of ice, and the interpretation of these phenomena in terms of molecular structure.
Author | : George D. Ashton |
Publisher | : Water Resources Publication |
Total Pages | : 504 |
Release | : 1986 |
Genre | : Technology & Engineering |
ISBN | : 9780918334596 |
Author | : Erland M. Schulson |
Publisher | : Cambridge University Press |
Total Pages | : 403 |
Release | : 2009-04-30 |
Genre | : Science |
ISBN | : 0521806208 |
The first complete account of the physics of the creep and fracture of ice, for graduates, engineers and scientists.
Author | : Jerome Weiss |
Publisher | : Springer Science & Business Media |
Total Pages | : 95 |
Release | : 2013-03-14 |
Genre | : Science |
ISBN | : 940076202X |
Sea ice is a major component of polar environments, especially in the Arctic where it covers the entire Arctic Ocean throughout most of the year. However, in the context of climate change, the Arctic sea ice cover has been declining significantly over the last decades, either in terms of its concentration or thickness. The sea ice cover evolution and climate change are strongly coupled through the albedo positive feedback, thus possibly explaining the Arctic amplification of climate warming. In addition to thermodynamics, sea ice kinematics (drift, deformation) appears as an essential factor in the evolution of the ice cover through a reduction of the average ice age (and consequently of the cover's thickness), or ice export out of the Arctic. This is a first motivation for a better understanding of the kinematical and mechanical processes of sea ice. A more upstream, theoretical motivation is a better understanding of the brittle deformation of geophysical objects across a wide range of scales. Indeed, owing to its very strong kinematics, compared e.g. to the Earth’s crust, an unrivaled kinematical data set is available for sea ice from in situ (e.g. drifting buoys) or satellite observations. Here, we review the recent advances in the understanding of sea ice drift, deformation and fracturing obtained from these data. We focus particularly on the scaling properties in time and scale that characterize these processes, and we emphasize the analogies that can be drawn from the deformation of the Earth’s crust. These scaling properties, which are the signature of long-range elastic interactions within the cover, constrain future developments in the modeling of sea ice mechanics. We also show that kinematical and rheological variables such as average velocity, average strain-rate or strength have significantly changed over the last decades, accompanying and actually accelerating the Arctic sea ice decline.