Mechanical Loading of Bones and Joints

Mechanical Loading of Bones and Joints
Author: Hideaki E. Takahashi
Publisher: Springer Science & Business Media
Total Pages: 314
Release: 2012-12-06
Genre: Medical
ISBN: 4431658920

Bones and joints are always under mechanical loading a key concept in understanding bone metabolism. Among the most common diseases of bones and joints in the elderly are osteoporosis and joint osteoarthritis. Dynamic changes in mechanical loading give rise to problems resulting in stenosis of the spinal column at the cervical, thoracic, and lumbar levels. Mechanical loading also accelerates joint destruction caused by inflammation from such conditions as chronic rheumatoid arthritis. An understanding of mechanical loading is essential therefore to clinicians, basic researchers, and engineers working with bones and joints. Providing up-to-date research and clinical findings, the contents of this volume are from the papers, symposia, and special lectures presented at the 12th Annual Meeting of the Orthopaedic Research Meeting of the Japanese Orthopaedic Association in Niigata, in October 1997.

Mechanical Loading and Bone

Mechanical Loading and Bone
Author: Jonathan H. Tobias
Publisher: Frontiers Media SA
Total Pages: 101
Release: 2016-01-20
Genre: Diseases of the endocrine glands. Clinical endocrinology
ISBN: 2889197514

This research topic is focused on recent advances in our understanding of effects of mechanical loading on the skeleton, and research methods used in addressing these. Though it is well established that mechanical loading provides an essential stimulus for skeletal growth and maintenance, there have been major advances recently in terms of our understanding of the molecular pathways involved, which are thought to provide novel drug targets for treating osteoporosis. The articles included in this topic encompass the full spectrum of laboratory and clinical research, and range from review articles, editorials, hypothesis papers and original research articles. Together, they demonstrate how mechanical loading underpins many aspects of bone biology, including the pathogenesis and treatment of osteoporosis and other clinical disorders associated with skeletal fragility.

Skeletal Tissue Mechanics

Skeletal Tissue Mechanics
Author: R. Bruce Martin
Publisher: Springer
Total Pages: 0
Release: 2015-11-03
Genre: Medical
ISBN: 9781493930012

This textbook describes the biomechanics of bone, cartilage, tendons and ligaments. It is rigorous in its approach to the mechanical properties of the skeleton yet it does not neglect the biological properties of skeletal tissue or require mathematics beyond calculus. Time is taken to introduce basic mechanical and biological concepts, and the approaches used for some of the engineering analyses are purposefully limited. The book is an effective bridge between engineering, veterinary, biological and medical disciplines and will be welcomed by students and researchers in biomechanics, orthopedics, physical anthropology, zoology and veterinary science. This book also: Maximizes reader insights into the mechanical properties of bone, fatigue and fracture resistance of bone and mechanical adaptability of the skeleton Illustrates synovial joint mechanics and mechanical properties of ligaments and tendons in an easy-to-understand way Provides exercises at the end of each chapter

Experimental and Computational Analysis of Dynamic Loading for Bone Formation

Experimental and Computational Analysis of Dynamic Loading for Bone Formation
Author: Todd Randall Dodge
Publisher:
Total Pages: 170
Release: 2013
Genre: Biomechanics
ISBN:

Bone is a dynamic tissue that is constantly remodeling to repair damage and strengthen regions exposed to loads during everyday activities. However, certain conditions, including long-term unloading of the skeleton, hormonal imbalances, and aging can disrupt the normal bone remodeling cycle and lead to low bone mass and osteoporosis, increasing risk of fracture. While numerous treatments for low bone mass have been devised, dynamic mechanical loading modalities, such as axial loading of long bones and lateral loading of joints, have recently been examined as potential methods of stimulating bone formation. The effectiveness of mechanical loading in strengthening bone is dependent both on the structural and geometric characteristics of the bone and the properties of the applied load. For instance, curvature in the structure of a bone causes bending and increased strain in response to an axial load, which may contribute to increased bone formation. In addition, frequency of the applied load has been determined to impact the degree of new bone formation; however, the mechanism behind this relationship remains unknown. In this thesis, the application of mechanical loading to treat osteoporotic conditions is examined and two questions are addressed: What role does the structural geometry of bone play in the mechanical damping of forces applied during loading? Does mechanical resonance enhance geometric effects, leading to localized areas of elevated bone formation dependent on loading frequency? Curvature in the structure of bone was hypothesized to enhance its damping ability and lead to increased bone formation through bending. In addition, loading at frequencies near the resonant frequencies of bone was predicted to cause increased bone formation, specifically in areas that experienced high principal strains due to localized displacements during resonant vibration. To test the hypothesis, mechanical loading experiments and simulations using finite element (FE) analysis were conducted to characterize the dynamic properties of bone. Results demonstrate that while surrounding joints contribute to the greatest portion of the damping capacity of the lower limb, bone absorbs a significant amount of energy through curvature-driven bending. In addition, results show that enhanced mechanical responses at loading frequencies near the resonant frequencies of bone may lead to increased bone formation in areas that experience the greatest principal strain during vibration. These findings demonstrate the potential therapeutic effects of mechanical loading in preventing costly osteoporotic fractures, and explore characteristics of bone that may lead to optimization of mechanical loading techniques. Further investigation of biomechanical properties of bone may lead to the prescribing of personalized mechanical loading treatments to treat osteoporotic diseases.

Bone Mechanics

Bone Mechanics
Author: Stephen C. Cowin
Publisher: CRC Press
Total Pages: 336
Release: 1989
Genre: Medical
ISBN:

This informative volume summarizes what is known about bone mechanics. It describes the methods used to acquire that knowledge and suggests the nature of future research on this topic. This easy-to-read book keeps mathematical notation simple and minimal and presents data in summary form. Bone Mechanics is concerned with the mechanical behavior and functional stress adaptation of whole bones as structural elements, the mechanical behavior and functional adaptation of bone tissue as material, and the physiological significance of the mechanical properties of bone and the biological response of bone to applied stress. Orthopaedic surgeons, dentists, anatomists, biologists, biomedical engineers and physiologists are among those who will find this volume to be of interest.

The Mechanical Adaptations of Bones

The Mechanical Adaptations of Bones
Author: John D. Currey
Publisher: Princeton University Press
Total Pages: 305
Release: 2014-07-14
Genre: Science
ISBN: 1400853729

This book relates the mechanical and structural properties of bone to its function in man and other vertebrates. John Currey, one of the pioneers of modern bone research, reviews existing information in the field and particularly emphasizes the correlation of the structure of bone with its various uses. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Musculoskeletal Biomechanics

Musculoskeletal Biomechanics
Author: Paul Brinckmann
Publisher: Thieme
Total Pages: 258
Release: 2002
Genre: Medical
ISBN: 9783131300515

Brinckmann and Wolgfang Frobin (both experimental biomechanics, U. Munster, Germany) and Gunnar Leivseth (neurosciences, Norwegian U. of Science and Technology, Trondheim) present the lines of thought and procedures in orthopedic biomechanics, and the current state of knowledge about mechanical effects on the human locomotive system. They include only minimal reference to physics and mechanics and the simplest possible mathematical calculations, and suggest that readers dig out their old textbooks if they want deeper explanation into those areas. Annotation copyrighted by Book News Inc., Portland, OR.

Skeletal Function and Form

Skeletal Function and Form
Author: Dennis R. Carter
Publisher: Cambridge University Press
Total Pages: 332
Release: 2001
Genre: Medical
ISBN: 052179000X

The intimate relationship between form and function inherent in the design of animals is perhaps nowhere more evident than in the musculoskeletal system. In the bones, cartilage, tendons, ligaments, and muscles of all vertebrates there is a graceful and efficient physical order. This book is about how function determines form. It addresses the role of mechanical factors in the development, adaptation, maintenance, ageing and repair of skeletal tissues. The authors refer to this process as mechanobiology and develop their theme within an evolutionary framework. They show how the normal development of skeletal tissues is influenced by mechanical stimulation beginning in the embryo and continuing throughout life into old age. They also show how degenerative disorders such as arthritis and osteoporosis are regulated by the same mechanical processes that influence development and growth. Skeletal Function and Form bridges important gaps among disciplines, providing a common ground for understanding, and will appeal to a wide audience of bioengineers, zoologists, anthropologists, palaeontologists and orthopaedists.

Bone Health and Osteoporosis

Bone Health and Osteoporosis
Author: United States Public Health Service
Publisher:
Total Pages: 0
Release: 2004-12
Genre: Health & Fitness
ISBN: 9781410219275

This first-ever Surgeon General's Report on bone health and osteoporosis illustrates the large burden that bone disease places on our Nation and its citizens. Like other chronic diseases that disproportionately affect the elderly, the prevalence of bone disease and fractures is projected to increase markedly as the population ages. If these predictions come true, bone disease and fractures will have a tremendous negative impact on the future well-being of Americans. But as this report makes clear, they need not come true: by working together we can change the picture of aging in America. Osteoporosis, fractures, and other chronic diseases no longer should be thought of as an inevitable part of growing old. By focusing on prevention and lifestyle changes, including physical activity and nutrition, as well as early diagnosis and appropriate treatment, Americans can avoid much of the damaging impact of bone disease and other chronic diseases. This Surgeon General's Report brings together for the first time the scientific evidence related to the prevention, assessment, diagnosis, and treatment of bone disease. More importantly, it provides a framework for moving forward. The report will be another effective tool in educating Americans about how they can promote bone health throughout their lives. This first-ever Surgeon General's Report on bone health and osteoporosis provides much needed information on bone health, an often overlooked aspect of physical health. This report follows in the tradition of previous Surgeon Generals' reports by identifying the relevant scientific data, rigorously evaluating and summarizing the evidence, and determining conclusions.