Measuring Interpreting And Translating Electron Quasiparticle Phonon Interactions On The Surfaces Of The Topological Insulators Bismuth Selenide And Bismuth Telluride
Download Measuring Interpreting And Translating Electron Quasiparticle Phonon Interactions On The Surfaces Of The Topological Insulators Bismuth Selenide And Bismuth Telluride full books in PDF, epub, and Kindle. Read online free Measuring Interpreting And Translating Electron Quasiparticle Phonon Interactions On The Surfaces Of The Topological Insulators Bismuth Selenide And Bismuth Telluride ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Colin Howard |
Publisher | : Springer |
Total Pages | : 100 |
Release | : 2016-10-14 |
Genre | : Science |
ISBN | : 3319447238 |
The thesis presents experimental and theoretical results about the surface dynamics and the surface Dirac fermion (DF) spectral function of the strong topological insulators Bi2Te3 and Bi2Se3. The experimental results reveal the presence of a strong Kohn anomaly in the measured surface phonon dispersion of a low-lying optical mode, and the absence of surface Rayleigh acoustic phonons. Fitting the experimental data to theoretical models employing phonon Matsubara functions allowed the extraction of the matrix elements of the coupling Hamiltonian and the modifications to the surface phonon propagator that are encoded in the phonon self-energy. This allowed, for the first time, calculation of phonon mode-specific DF coupling λν(q) from experimental data, with average coupling significantly higher than typical values for metals, underscoring the strong coupling between optical surface phonons and surface DFs in topological insulators. Finally, to connect to experimental results obtained from photoemission spectroscopies, an electronic (DF) Matsubara function was constructed using the determined electron-phonon matrix elements and the optical phonon dispersion. This allowed calculation of the DF spectral function and density of states, allowing for comparison with photoemission and scanning tunneling spectroscopies. The results set the necessary energy resolution and extraction methodology for calculating λ from the DF perspective.
Author | : Shun-Qing Shen |
Publisher | : Springer Science & Business Media |
Total Pages | : 234 |
Release | : 2013-01-11 |
Genre | : Technology & Engineering |
ISBN | : 364232858X |
Topological insulators are insulating in the bulk, but process metallic states present around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, the first of its kind on topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological insulators and related areas. Shun-Qing Shen is a Professor at the Department of Physics, the University of Hong Kong, China.
Author | : Alexander V. Kolobov |
Publisher | : Springer |
Total Pages | : 545 |
Release | : 2016-07-26 |
Genre | : Technology & Engineering |
ISBN | : 3319314505 |
This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.
Author | : David Vanderbilt |
Publisher | : Cambridge University Press |
Total Pages | : 395 |
Release | : 2018-11-01 |
Genre | : Science |
ISBN | : 1108661300 |
Over the past twenty-five years, mathematical concepts associated with geometric phases have come to occupy a central place in our modern understanding of the physics of electrons in solids. These 'Berry phases' describe the global phase acquired by a quantum state as the Hamiltonian is changed. Beginning at an elementary level, this book provides a pedagogical introduction to the important role of Berry phases and curvatures, and outlines their great influence upon many key properties of electrons in solids, including electric polarization, anomalous Hall conductivity, and the nature of the topological insulating state. It focuses on drawing connections between physical concepts and provides a solid framework for their integration, enabling researchers and students to explore and develop links to related fields. Computational examples and exercises throughout provide an added dimension to the book, giving readers the opportunity to explore the central concepts in a practical and engaging way.
Author | : Zhiming M. Wang |
Publisher | : Springer Science & Business Media |
Total Pages | : 296 |
Release | : 2013-11-18 |
Genre | : Technology & Engineering |
ISBN | : 3319028502 |
This book reviews the structure and electronic, magnetic, and other properties of various MoS2 (Molybdenum disulfide) nanostructures, with coverage of synthesis, Valley polarization, spin physics, and other topics. MoS2 is an important, graphene-like layered nano-material that substantially extends the range of possible nanostructures and devices for nanofabrication. These materials have been widely researched in recent years, and have become an attractive topic for applications such as catalytic materials and devices based on field-effect transistors (FETs) and semiconductors. Chapters from leading scientists worldwide create a bridge between MoS2 nanomaterials and fundamental physics in order to stimulate readers' interest in the potential of these novel materials for device applications. Since MoS2 nanostructures are expected to be increasingly important for future developments in energy and other electronic device applications, this book can be recommended for Physics and Materials Science and Engineering departments and as reference for researchers in the field.
Author | : Diana Davila Pineda |
Publisher | : John Wiley & Sons |
Total Pages | : 404 |
Release | : 2017-08-22 |
Genre | : Technology & Engineering |
ISBN | : 3527698132 |
The latest volume in the well-established AMN series, this ready reference provides an up-to-date, self-contained summary of recent developments in the technologies and systems for thermoelectricity. Following an initial chapter that introduces the fundamentals and principles of thermoelectricity, subsequent chapters discuss the synthesis and integration of various bulk thermoelectric as well as nanostructured materials. The book then goes on to discuss characterization techniques, including various light and mechanic microscopy techniques, while also summarizing applications for thermoelectric materials, such as micro- and nano-thermoelectric generators, wearable electronics and energy conversion devices. The result is a bridge between industry and scientific researchers seeking to develop thermoelectric generators.
Author | : Claudia S. Schnohr |
Publisher | : Springer |
Total Pages | : 367 |
Release | : 2014-11-05 |
Genre | : Technology & Engineering |
ISBN | : 3662443627 |
X-ray Absorption Spectroscopy (XAS) is a powerful technique with which to probe the properties of matter, equally applicable to the solid, liquid and gas phases. Semiconductors are arguably our most technologically-relevant group of materials given they form the basis of the electronic and photonic devices that now so widely permeate almost every aspect of our society. The most effective utilisation of these materials today and tomorrow necessitates a detailed knowledge of their structural and vibrational properties. Through a series of comprehensive reviews, this book demonstrates the versatility of XAS for semiconductor materials analysis and presents important research activities in this ever growing field. A short introduction of the technique, aimed primarily at XAS newcomers, is followed by twenty independent chapters dedicated to distinct groups of materials. Topics span dopants in crystalline semiconductors and disorder in amorphous semiconductors to alloys and nanometric material as well as in-situ measurements of the effects of temperature and pressure. Summarizing research in their respective fields, the authors highlight important experimental findings and demonstrate the capabilities and applications of the XAS technique. This book provides a comprehensive review and valuable reference guide for both XAS newcomers and experts involved in semiconductor materials research.
Author | : S.J.L. Billinge |
Publisher | : Springer Science & Business Media |
Total Pages | : 294 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 1461506131 |
This series of books, which is published at the rate of about one per year, addresses fundamental problems in materials science. The contents cover a broad range of topics from small clusters of atoms to engineering materials and involve chemistry, physics, materials science, and engineering, with length scales ranging from Angstroms up to millimeters. The emphasis is on basic science rather than on applications. Each book focuses on a single area of current interest and brings together leading experts to give an up-to-date discussion of their work and the work of others. Each article contains enough references that the interested reader can access the relevant literature. Thanks are given to the Center for Fundamental Materials Research at Michigan State University for supporting this series. M.F. Thorpe, Series Editor E-mail: [email protected] East Lansing, Michigan, November 200 I v PREFACE The study of the atomic structure of crystalline materials began at the beginning of the twentieth century with the discovery by Max von Laue and by W.H. and W.L. Bragg that crystals diffract x-rays. At that time, even the existence of atoms was controversial.
Author | : Sir Nevill Mott |
Publisher | : Clarendon Press |
Total Pages | : 160 |
Release | : 1993-05-20 |
Genre | : Science |
ISBN | : 9780198539797 |
This second edition deals in an elementary way with electrons in non-crystalline systems. It reflects advances in the theory of interactions in non-crystalline systems, provides a more detailed discussion of the "minimum metallic conductivity", and addresses the relevance of disorder in the new high-temperature semiconductors.
Author | : Loutfy H. Madkour |
Publisher | : Springer |
Total Pages | : 814 |
Release | : 2019-06-27 |
Genre | : Technology & Engineering |
ISBN | : 3030216217 |
This book presents synthesis techniques for the preparation of low-dimensional nanomaterials including 0D (quantum dots), 1D (nanowires, nanotubes) and 2D (thin films, few layers), as well as their potential applications in nanoelectronic systems. It focuses on the size effects involved in the transition from bulk materials to nanomaterials; the electronic properties of nanoscale devices; and different classes of nanomaterials from microelectronics to nanoelectronics, to molecular electronics. Furthermore, it demonstrates the structural stability, physical, chemical, magnetic, optical, electrical, thermal, electronic and mechanical properties of the nanomaterials. Subsequent chapters address their characterization, fabrication techniques from lab-scale to mass production, and functionality. In turn, the book considers the environmental impact of nanotechnology and novel applications in the mechanical industries, energy harvesting, clean energy, manufacturing materials, electronics, transistors, health and medical therapy. In closing, it addresses the combination of biological systems with nanoelectronics and highlights examples of nanoelectronic–cell interfaces and other advanced medical applications. The book answers the following questions: • What is different at the nanoscale? • What is new about nanoscience? • What are nanomaterials (NMs)? • What are the fundamental issues in nanomaterials? • Where are nanomaterials found? • What nanomaterials exist in nature? • What is the importance of NMs in our lives? • Why so much interest in nanomaterials? • What is at nanoscale in nanomaterials? • What is graphene? • Are pure low-dimensional systems interesting and worth pursuing? • Are nanotechnology products currently available? • What are sensors? • How can Artificial Intelligence (AI) and nanotechnology work together? • What are the recent advances in nanoelectronic materials? • What are the latest applications of NMs?