Probability and Measure

Probability and Measure
Author: Patrick Billingsley
Publisher: John Wiley & Sons
Total Pages: 612
Release: 2017
Genre:
ISBN: 9788126517718

Now in its new third edition, Probability and Measure offers advanced students, scientists, and engineers an integrated introduction to measure theory and probability. Retaining the unique approach of the previous editions, this text interweaves material on probability and measure, so that probability problems generate an interest in measure theory and measure theory is then developed and applied to probability. Probability and Measure provides thorough coverage of probability, measure, integration, random variables and expected values, convergence of distributions, derivatives and conditional probability, and stochastic processes. The Third Edition features an improved treatment of Brownian motion and the replacement of queuing theory with ergodic theory.· Probability· Measure· Integration· Random Variables and Expected Values· Convergence of Distributions· Derivatives and Conditional Probability· Stochastic Processes

Integration, Measure and Probability

Integration, Measure and Probability
Author: H. R. Pitt
Publisher: Courier Corporation
Total Pages: 130
Release: 2012-01-01
Genre: Mathematics
ISBN: 0486488152

Introductory treatment develops the theory of integration in a general context, making it applicable to other branches of analysis. More specialized topics include convergence theorems and random sequences and functions. 1963 edition.

Measure, Integral and Probability

Measure, Integral and Probability
Author: Marek Capinski
Publisher: Springer Science & Business Media
Total Pages: 229
Release: 2013-06-29
Genre: Mathematics
ISBN: 1447136314

This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.

A User's Guide to Measure Theoretic Probability

A User's Guide to Measure Theoretic Probability
Author: David Pollard
Publisher: Cambridge University Press
Total Pages: 372
Release: 2002
Genre: Mathematics
ISBN: 9780521002899

This book grew from a one-semester course offered for many years to a mixed audience of graduate and undergraduate students who have not had the luxury of taking a course in measure theory. The core of the book covers the basic topics of independence, conditioning, martingales, convergence in distribution, and Fourier transforms. In addition there are numerous sections treating topics traditionally thought of as more advanced, such as coupling and the KMT strong approximation, option pricing via the equivalent martingale measure, and the isoperimetric inequality for Gaussian processes. The book is not just a presentation of mathematical theory, but is also a discussion of why that theory takes its current form. It will be a secure starting point for anyone who needs to invoke rigorous probabilistic arguments and understand what they mean.

Probability

Probability
Author: Rick Durrett
Publisher: Cambridge University Press
Total Pages:
Release: 2010-08-30
Genre: Mathematics
ISBN: 113949113X

This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.

Measure Theory and Probability Theory

Measure Theory and Probability Theory
Author: Krishna B. Athreya
Publisher: Springer Science & Business Media
Total Pages: 625
Release: 2006-07-27
Genre: Business & Economics
ISBN: 038732903X

This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix. The book starts with an informal introduction that provides some heuristics into the abstract concepts of measure and integration theory, which are then rigorously developed. The first part of the book can be used for a standard real analysis course for both mathematics and statistics Ph.D. students as it provides full coverage of topics such as the construction of Lebesgue-Stieltjes measures on real line and Euclidean spaces, the basic convergence theorems, L^p spaces, signed measures, Radon-Nikodym theorem, Lebesgue's decomposition theorem and the fundamental theorem of Lebesgue integration on R, product spaces and product measures, and Fubini-Tonelli theorems. It also provides an elementary introduction to Banach and Hilbert spaces, convolutions, Fourier series and Fourier and Plancherel transforms. Thus part I would be particularly useful for students in a typical Statistics Ph.D. program if a separate course on real analysis is not a standard requirement. Part II (chapters 6-13) provides full coverage of standard graduate level probability theory. It starts with Kolmogorov's probability model and Kolmogorov's existence theorem. It then treats thoroughly the laws of large numbers including renewal theory and ergodic theorems with applications and then weak convergence of probability distributions, characteristic functions, the Levy-Cramer continuity theorem and the central limit theorem as well as stable laws. It ends with conditional expectations and conditional probability, and an introduction to the theory of discrete time martingales. Part III (chapters 14-18) provides a modest coverage of discrete time Markov chains with countable and general state spaces, MCMC, continuous time discrete space jump Markov processes, Brownian motion, mixing sequences, bootstrap methods, and branching processes. It could be used for a topics/seminar course or as an introduction to stochastic processes. Krishna B. Athreya is a professor at the departments of mathematics and statistics and a Distinguished Professor in the College of Liberal Arts and Sciences at the Iowa State University. He has been a faculty member at University of Wisconsin, Madison; Indian Institute of Science, Bangalore; Cornell University; and has held visiting appointments in Scandinavia and Australia. He is a fellow of the Institute of Mathematical Statistics USA; a fellow of the Indian Academy of Sciences, Bangalore; an elected member of the International Statistical Institute; and serves on the editorial board of several journals in probability and statistics. Soumendra N. Lahiri is a professor at the department of statistics at the Iowa State University. He is a fellow of the Institute of Mathematical Statistics, a fellow of the American Statistical Association, and an elected member of the International Statistical Institute.

Probability and Measure Theory

Probability and Measure Theory
Author: Robert B. Ash
Publisher: Academic Press
Total Pages: 536
Release: 2000
Genre: Mathematics
ISBN: 9780120652020

Probability and Measure Theory, Second Edition, is a text for a graduate-level course in probability that includes essential background topics in analysis. It provides extensive coverage of conditional probability and expectation, strong laws of large numbers, martingale theory, the central limit theorem, ergodic theory, and Brownian motion. Clear, readable style Solutions to many problems presented in text Solutions manual for instructors Material new to the second edition on ergodic theory, Brownian motion, and convergence theorems used in statistics No knowledge of general topology required, just basic analysis and metric spaces Efficient organization

Probability and Bayesian Modeling

Probability and Bayesian Modeling
Author: Jim Albert
Publisher: CRC Press
Total Pages: 553
Release: 2019-12-06
Genre: Mathematics
ISBN: 1351030132

Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.

An Introduction to Measure-theoretic Probability

An Introduction to Measure-theoretic Probability
Author: George G. Roussas
Publisher: Gulf Professional Publishing
Total Pages: 463
Release: 2005
Genre: Computers
ISBN: 0125990227

This book provides in a concise, yet detailed way, the bulk of the probabilistic tools that a student working toward an advanced degree in statistics, probability and other related areas, should be equipped with. The approach is classical, avoiding the use of mathematical tools not necessary for carrying out the discussions. All proofs are presented in full detail. * Excellent exposition marked by a clear, coherent and logical devleopment of the subject * Easy to understand, detailed discussion of material * Complete proofs

Probability Space

Probability Space
Author: Nancy Kress
Publisher: Macmillan
Total Pages: 372
Release: 2004-01-05
Genre: Fiction
ISBN: 9780765345141

Nancy Kress cemented her reputation in SF with the publication of her multiple-award–winning novella, “Beggars in Spain,” which became the basis for her extremely successful Beggars Trilogy (comprising Beggars in Spain, Beggars and Choosers, and Beggars Ride). And now she brings us Probability Space, the conclusion of the trilogy that began with Probability Moon and then Probability Sun, which is centered on the same world as Kress’s Nebula Award-winning novelette, “Flowers of Aulit Prison.” The Probability Trilogy has already been widely recognized as the next great work by this important SF writer. In Probability Space, humanity’s war with the alien Fallers continues, and it is a war we are losing. Our implacable foes ignore all attempts at communication, and they take no prisoners. Our only hope lies with an unlikely coalition: Major Lyle Kaufman, retired warrior; Marbet Grant, the Sensitive who’s involved with Kaufman; Amanda, a very confused fourteen-year-old girl; and Magdalena, one of the biggest power brokers in all of human space. As the action moves from Earth to Mars to the farthest reaches of known space, with civil unrest back home and alien war in deep space, four humans--armed with little more than an unproven theory--try to enter the Fallers’ home star system. It’s a desperate gamble, and the fate of the entire universe may hang in the balance.