Matrix Vector Analysis
Download Matrix Vector Analysis full books in PDF, epub, and Kindle. Read online free Matrix Vector Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Dennis S. Bernstein |
Publisher | : Princeton University Press |
Total Pages | : 1593 |
Release | : 2018-02-27 |
Genre | : Mathematics |
ISBN | : 0691176531 |
The essential reference book on matrices—now fully updated and expanded, with new material on scalar and vector mathematics Since its initial publication, this book has become the essential reference for users of matrices in all branches of engineering, science, and applied mathematics. In this revised and expanded edition, Dennis Bernstein combines extensive material on scalar and vector mathematics with the latest results in matrix theory to make this the most comprehensive, current, and easy-to-use book on the subject. Each chapter describes relevant theoretical background followed by specialized results. Hundreds of identities, inequalities, and facts are stated clearly and rigorously, with cross-references, citations to the literature, and helpful comments. Beginning with preliminaries on sets, logic, relations, and functions, this unique compendium covers all the major topics in matrix theory, such as transformations and decompositions, polynomial matrices, generalized inverses, and norms. Additional topics include graphs, groups, convex functions, polynomials, and linear systems. The book also features a wealth of new material on scalar inequalities, geometry, combinatorics, series, integrals, and more. Now more comprehensive than ever, Scalar, Vector, and Matrix Mathematics includes a detailed list of symbols, a summary of notation and conventions, an extensive bibliography and author index with page references, and an exhaustive subject index. Fully updated and expanded with new material on scalar and vector mathematics Covers the latest results in matrix theory Provides a list of symbols and a summary of conventions for easy and precise use Includes an extensive bibliography with back-referencing plus an author index
Author | : John Hamal Hubbard |
Publisher | : |
Total Pages | : 284 |
Release | : 2009 |
Genre | : Algebras, Linear |
ISBN | : 9780971576674 |
Author | : Richard L. Eisenman |
Publisher | : Courier Corporation |
Total Pages | : 322 |
Release | : 2013-07-24 |
Genre | : Mathematics |
ISBN | : 0486154572 |
This outstanding text and reference for upper-level undergraduates features extensive problems and solutions in its application of matrix ideas to vector methods for a synthesis of pure and applied mathematics. 1963 edition. Includes 121 figures.
Author | : Jacob T. Schwartz |
Publisher | : Courier Corporation |
Total Pages | : 198 |
Release | : 2012-05-23 |
Genre | : Mathematics |
ISBN | : 0486143708 |
Realizing that matrices can be a confusing topic for the beginner, the author of this undergraduate text has made things as clear as possible by focusing on problem solving, rather than elaborate proofs. He begins with the basics, offering students a solid foundation for the later chapters on using special matrices to solve problems.The first three chapters present the basics of matrices, including addition, multiplication, and division, and give solid practice in the areas of matrix manipulation where the laws of algebra do not apply. In later chapters the author introduces vectors and shows how to use vectors and matrices to solve systems of linear equations. He also covers special matrices — including complex numbers, quaternion matrices, and matrices with complex entries — and transpose matrices; the trace of a matrix; the cross product of matrices; eigenvalues and eigenvectors; and infinite series of matrices. Exercises at the end of each section give students further practice in problem solving. Prerequisites include a background in algebra, and in the later chapters, a knowledge of solid geometry. The book was designed as an introductory text for college freshmen and sophomores, but selected chapters can also be used to supplement advanced high school classes. Professionals who need a better understanding or review of the subject will also benefit from this concise guide.
Author | : Stephen Boyd |
Publisher | : Cambridge University Press |
Total Pages | : 477 |
Release | : 2018-06-07 |
Genre | : Business & Economics |
ISBN | : 1316518965 |
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Author | : Sudipto Banerjee |
Publisher | : CRC Press |
Total Pages | : 586 |
Release | : 2014-06-06 |
Genre | : Mathematics |
ISBN | : 1420095382 |
Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra. The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting decompositions. They introduce Euclidean vector spaces using less abstract concepts and make connections to systems of linear equations wherever possible. After illustrating the importance of the rank of a matrix, they discuss complementary subspaces, oblique projectors, orthogonality, orthogonal projections and projectors, and orthogonal reduction. The text then shows how the theoretical concepts developed are handy in analyzing solutions for linear systems. The authors also explain how determinants are useful for characterizing and deriving properties concerning matrices and linear systems. They then cover eigenvalues, eigenvectors, singular value decomposition, Jordan decomposition (including a proof), quadratic forms, and Kronecker and Hadamard products. The book concludes with accessible treatments of advanced topics, such as linear iterative systems, convergence of matrices, more general vector spaces, linear transformations, and Hilbert spaces.
Author | : Rajendra Bhatia |
Publisher | : Springer Science & Business Media |
Total Pages | : 360 |
Release | : 2013-12-01 |
Genre | : Mathematics |
ISBN | : 1461206537 |
This book presents a substantial part of matrix analysis that is functional analytic in spirit. Topics covered include the theory of majorization, variational principles for eigenvalues, operator monotone and convex functions, and perturbation of matrix functions and matrix inequalities. The book offers several powerful methods and techniques of wide applicability, and it discusses connections with other areas of mathematics.
Author | : Jan R. Magnus |
Publisher | : John Wiley & Sons |
Total Pages | : 660 |
Release | : 2019-03-15 |
Genre | : Mathematics |
ISBN | : 1119541166 |
A brand new, fully updated edition of a popular classic on matrix differential calculus with applications in statistics and econometrics This exhaustive, self-contained book on matrix theory and matrix differential calculus provides a treatment of matrix calculus based on differentials and shows how easy it is to use this theory once you have mastered the technique. Jan Magnus, who, along with the late Heinz Neudecker, pioneered the theory, develops it further in this new edition and provides many examples along the way to support it. Matrix calculus has become an essential tool for quantitative methods in a large number of applications, ranging from social and behavioral sciences to econometrics. It is still relevant and used today in a wide range of subjects such as the biosciences and psychology. Matrix Differential Calculus with Applications in Statistics and Econometrics, Third Edition contains all of the essentials of multivariable calculus with an emphasis on the use of differentials. It starts by presenting a concise, yet thorough overview of matrix algebra, then goes on to develop the theory of differentials. The rest of the text combines the theory and application of matrix differential calculus, providing the practitioner and researcher with both a quick review and a detailed reference. Fulfills the need for an updated and unified treatment of matrix differential calculus Contains many new examples and exercises based on questions asked of the author over the years Covers new developments in field and features new applications Written by a leading expert and pioneer of the theory Part of the Wiley Series in Probability and Statistics Matrix Differential Calculus With Applications in Statistics and Econometrics Third Edition is an ideal text for graduate students and academics studying the subject, as well as for postgraduates and specialists working in biosciences and psychology.
Author | : James E. Gentle |
Publisher | : Springer Science & Business Media |
Total Pages | : 536 |
Release | : 2007-07-27 |
Genre | : Computers |
ISBN | : 0387708723 |
Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.
Author | : Ilse C. F. Ipsen |
Publisher | : SIAM |
Total Pages | : 135 |
Release | : 2009-07-23 |
Genre | : Mathematics |
ISBN | : 0898716764 |
Matrix analysis presented in the context of numerical computation at a basic level.