Mathematics, Physics & Chemistry With The Wolfram Language

Mathematics, Physics & Chemistry With The Wolfram Language
Author: S M Blinder
Publisher: World Scientific
Total Pages: 444
Release: 2022-02-18
Genre: Computers
ISBN: 981124720X

The Wolfram language is the programming language of Mathematica, used increasingly by scientists due to its ease of learning and user-friendliness. This book focuses on applications of the Wolfram language to applied mathematics, physics and chemistry. Topics discussed are broad and comprehensive, from differential equations and special functions to fractals and chess, from electromagnetism and optics to relativity and black holes. There is also extensive coverage of quantum theory and quantum chemistry, and the book is peppered with more than 200 color graphics to aid visualization of these concepts. The program codes are provided online as Mathematica notebooks, allowing readers to modify them and manipulate the graphics in real time. This book should be a valuable resource for researchers, educators and students in science and computing who can profit from a more interactive form of instruction.

Introduction to Mathematica® for Physicists

Introduction to Mathematica® for Physicists
Author: Andrey Grozin
Publisher: Springer Science & Business Media
Total Pages: 215
Release: 2013-08-26
Genre: Science
ISBN: 3319008943

The basics of computer algebra and the language of Mathematica are described in this textbook, leading towards an understanding of Mathematica that allows the reader to solve problems in physics, mathematics, and chemistry. Mathematica is the most widely used system for doing mathematical calculations by computer, including symbolic and numeric calculations and graphics. It is used in physics and other branches of science, in mathematics, education and many other areas.

Hands-on Start to Wolfram Mathematica

Hands-on Start to Wolfram Mathematica
Author: Cliff Hastings
Publisher:
Total Pages: 0
Release: 2016
Genre: Computers
ISBN: 9781579550127

For more than 25 years, Mathematica has been the principal computation environment for millions of innovators, educators, students, and others around the world. This book is an introduction to Mathematica. The goal is to provide a hands-on experience introducing the breadth of Mathematica with a focus on ease of use. Readers get detailed instruction with examples for interactive learning and end-of-chapter exercises. Each chapter also contains authors' tips from their combined 50+ years of Mathematica use.

Classical Mechanics with Mathematica®

Classical Mechanics with Mathematica®
Author: Antonio Romano
Publisher: Springer
Total Pages: 644
Release: 2018-05-29
Genre: Science
ISBN: 3319775952

This textbook takes a broad yet thorough approach to mechanics, aimed at bridging the gap between classical analytic and modern differential geometric approaches to the subject. Developed by the authors from over 30 years of teaching experience, the presentation is designed to give students an overview of the many different models used through the history of the field—from Newton to Hamilton—while also painting a clear picture of the most modern developments. The text is organized into two parts. The first focuses on developing the mathematical framework of linear algebra and differential geometry necessary for the remainder of the book. Topics covered include tensor algebra, Euclidean and symplectic vector spaces, differential manifolds, and absolute differential calculus. The second part of the book applies these topics to kinematics, rigid body dynamics, Lagrangian and Hamiltonian dynamics, Hamilton–Jacobi theory, completely integrable systems, statistical mechanics of equilibrium, and impulsive dynamics, among others. This new edition has been completely revised and updated and now includes almost 200 exercises, as well as new chapters on celestial mechanics, one-dimensional continuous systems, and variational calculus with applications. Several Mathematica® notebooks are available to download that will further aid students in their understanding of some of the more difficult material. Unique in its scope of coverage and method of approach, Classical Mechanics with Mathematica® will be useful resource for graduate students and advanced undergraduates in applied mathematics and physics who hope to gain a deeper understanding of mechanics.

Symmetry Theory in Molecular Physics with Mathematica

Symmetry Theory in Molecular Physics with Mathematica
Author: William McClain
Publisher: Springer Science & Business Media
Total Pages: 672
Release: 2010-03-12
Genre: Science
ISBN: 0387734708

Prof. McClain has, quite simply, produced a new kind of tutorial book. It is written using the logic engine Mathematica, which permits concrete exploration and development of every concept involved in Symmetry Theory. It is aimed at students of chemistry and molecular physics who need to know mathematical group theory and its applications, either for their own research or for understanding the language and concepts of their field. The book begins with the most elementary symmetry concepts, then presents mathematical group theory, and finally the projection operators that flow from the Great Orthogonality are automated and applied to chemical and spectroscopic problems.

Mathematica Beyond Mathematics

Mathematica Beyond Mathematics
Author: José Guillermo Sánchez León
Publisher: CRC Press
Total Pages: 629
Release: 2017-06-12
Genre: Science
ISBN: 1351652214

Although many books have been written about Mathematica, very few of them cover the new functionality added to the most recent versions of the program. Mathematica Beyond Mathematics: The Wolfram Language in the Real World introduces the new features using real-world examples, based on the experience of the author as a consultant. In the process, you will also learn more about the Wolfram Language and how you can use it to solve a wide variety of problems. The author raises questions from a wide range of topics and answers them by taking full advantage of Mathematica's latest features. For example; What sources of energy does the world really use? How can we calculate tolerance limits in manufacturing processes? Are our cities getting warmer? Is the novel El Quijote written in Pi? How can we find planets outside our solar system?

Guide to Essential Math

Guide to Essential Math
Author: Sy M. Blinder
Publisher: Newnes
Total Pages: 285
Release: 2013-02-14
Genre: Mathematics
ISBN: 0124071589

This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly) that is needed to succeed in science courses. The focus is on math actually used in physics, chemistry, and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student's ability to think in mathematical terms and to apply quantitative methods to scientific problems. Detailed illustrations and links to reference material online help further comprehension. The second edition features new problems and illustrations and features expanded chapters on matrix algebra and differential equations. Use of proven pedagogical techniques developed during the author’s 40 years of teaching experience New practice problems and exercises to enhance comprehension Coverage of fairly advanced topics, including vector and matrix algebra, partial differential equations, special functions and complex variables

Using Mathematica for Quantum Mechanics

Using Mathematica for Quantum Mechanics
Author: Roman Schmied
Publisher: Springer Nature
Total Pages: 193
Release: 2019-09-28
Genre: Science
ISBN: 9811375887

This book revisits many of the problems encountered in introductory quantum mechanics, focusing on computer implementations for finding and visualizing analytical and numerical solutions. It subsequently uses these implementations as building blocks to solve more complex problems, such as coherent laser-driven dynamics in the Rubidium hyperfine structure or the Rashba interaction of an electron moving in 2D. The simulations are highlighted using the programming language Mathematica. No prior knowledge of Mathematica is needed; alternatives, such as Matlab, Python, or Maple, can also be used.

Mathematical Physics in Theoretical Chemistry

Mathematical Physics in Theoretical Chemistry
Author: S.M. Blinder
Publisher: Elsevier
Total Pages: 426
Release: 2018-11-26
Genre: Science
ISBN: 0128137010

Mathematical Physics in Theoretical Chemistry deals with important topics in theoretical and computational chemistry. Topics covered include density functional theory, computational methods in biological chemistry, and Hartree-Fock methods. As the second volume in the Developments in Physical & Theoretical Chemistry series, this volume further highlights the major advances and developments in research, also serving as a basis for advanced study. With a multidisciplinary and encompassing structure guided by a highly experienced editor, the series is designed to enable researchers in both academia and industry stay abreast of developments in physical and theoretical chemistry. Brings together the most important aspects and recent advances in theoretical and computational chemistry Covers computational methods for small molecules, density-functional methods, and computational chemistry on personal and quantum computers Presents cutting-edge developments in theoretical and computational chemistry that are applicable to graduate students and research professionals in chemistry, physics, materials science and biochemistry