Mathematics for Engineers and Science Labs Using Maxima

Mathematics for Engineers and Science Labs Using Maxima
Author: Seifedine Kadry
Publisher: CRC Press
Total Pages: 306
Release: 2019-02-21
Genre: Mathematics
ISBN: 0429891598

This book is designed to be a vital companion to math textbooks covering the topics of precalculus, calculus, linear algebra, differential equations, and probability and statistics. While these existing textbooks focus mainly on solving mathematic problems using the old paper-and-pencil method, this book teaches how to solve these problems using Maxima open-source software. Maxima is a system for the manipulation of symbolic and numerical expressions, including differentiation, integration, Taylor series, Laplace transforms, ordinary differential equations, systems of linear equations, polynomials, sets, lists, vectors, and matrices. One of the benefits of using Maxima to solve mathematics problems is the immediacy with which it produces answers. Investing in learning Maxima now will pay off in the future, particularly for students and beginning professionals in mathematics, science, and engineering. The volume will help readers to apply nearly all of the Maxima skills discussed here to future courses and research.

Physics—Problems, Solutions, and Computer Calculations

Physics—Problems, Solutions, and Computer Calculations
Author: Wan Muhamad Saridan Wan Hassan
Publisher: Springer Nature
Total Pages: 583
Release: 2024-01-09
Genre: Science
ISBN: 3031431650

Knowledge of and skill in physics are essential foundations for studies in science and engineering. This book offers students an introduction to the basic concepts and principles of physics. It covers various topics specifically related to waves, sound, electricity, magnetism, and optics. Each chapter begins with a summary of concepts, principles, definitions, and formulae to be discussed, as well as ending with problems and solutions that illustrate the specific topic. Steps are detailed to help build reasoning and understanding. There are 250 worked problems and 100 exercises in the book, as well as 280 figures to help the reader visualize the processes being addressed. Computer calculations and solutions are carried out using wxMaxima to give insight and help build computational skills. The book is aimed at first-year undergraduate students studying introductory physics, and would also be useful for physics teachers in their instruction, particularly the exercises at the end of each chapter.

Advanced Engineering Mathematics

Advanced Engineering Mathematics
Author: Michael Greenberg
Publisher:
Total Pages: 1344
Release: 2013-09-20
Genre: Engineering mathematics
ISBN: 9781292042541

Appropriate for one- or two-semester Advanced Engineering Mathematics courses in departments of Mathematics and Engineering. This clear, pedagogically rich book develops a strong understanding of the mathematical principles and practices that today's engineers and scientists need to know. Equally effective as either a textbook or reference manual, it approaches mathematical concepts from a practical-use perspective making physical applications more vivid and substantial. Its comprehensive instructional framework supports a conversational, down-to-earth narrative style offering easy accessibility and frequent opportunities for application and reinforcement.

Advanced Engineering Mathematics

Advanced Engineering Mathematics
Author: Dennis Zill
Publisher: Jones & Bartlett Learning
Total Pages: 1005
Release: 2011
Genre: Mathematics
ISBN: 0763779660

Accompanying CD-ROM contains ... "a chapter on engineering statistics and probability / by N. Bali, M. Goyal, and C. Watkins."--CD-ROM label.

Higher Engineering Mathematics

Higher Engineering Mathematics
Author: John Bird
Publisher: Routledge
Total Pages: 1725
Release: 2017-04-07
Genre: Mathematics
ISBN: 1351965808

Now in its eighth edition, Higher Engineering Mathematics has helped thousands of students succeed in their exams. Theory is kept to a minimum, with the emphasis firmly placed on problem-solving skills, making this a thoroughly practical introduction to the advanced engineering mathematics that students need to master. The extensive and thorough topic coverage makes this an ideal text for upper-level vocational courses and for undergraduate degree courses. It is also supported by a fully updated companion website with resources for both students and lecturers. It has full solutions to all 2,000 further questions contained in the 277 practice exercises.

Scientific Programming

Scientific Programming
Author: Jorge Alberto Calvo
Publisher: Cambridge Scholars Publishing
Total Pages: 562
Release: 2018-12-19
Genre: Computers
ISBN: 1527523845

This book offers an introduction to computer programming, numerical analysis, and other mathematical ideas that extend the basic topics learned in calculus. It illustrates how mathematicians and scientists write computer programs, covering the general building blocks of programming languages and a description of how these concepts fit together to allow computers to produce the results they do. Topics explored here include binary arithmetic, algorithms for rendering graphics, the smooth interpolation of discrete data, and the numerical approximation of non-elementary integrals. The book uses an open-source computer algebra system called Maxima. Using Maxima, first-time programmers can perform familiar tasks, such as graphing functions or solving equations, and learn the basic structures of programming before moving on to other popular programming languages. The epilogue provides some simple examples of how this process works in practice. The book will particularly appeal to students who have finished their calculus sequence.

Programming for Computations - Python

Programming for Computations - Python
Author: Svein Linge
Publisher: Springer
Total Pages: 244
Release: 2016-07-25
Genre: Computers
ISBN: 3319324284

This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.

Sage for Undergraduates

Sage for Undergraduates
Author: Gregory V. Bard
Publisher: American Mathematical Soc.
Total Pages: 378
Release: 2015-02-16
Genre: Mathematics
ISBN: 1470411113

As the open-source and free competitor to expensive software like MapleTM, Mathematica®, Magma, and MATLAB®, Sage offers anyone with access to a web browser the ability to use cutting-edge mathematical software and display his or her results for others, often with stunning graphics. This book is a gentle introduction to Sage for undergraduate students toward the end of Calculus II (single-variable integral calculus) or higher-level course work such as Multivariate Calculus, Differential Equations, Linear Algebra, or Math Modeling. The book assumes no background in computer science, but the reader who finishes the book will have learned about half of a first semester Computer Science I course, including large parts of the Python programming language. The audience of the book is not only math majors, but also physics, engineering, finance, statistics, chemistry, and computer science majors.

Engineering Design Optimization

Engineering Design Optimization
Author: Joaquim R. R. A. Martins
Publisher: Cambridge University Press
Total Pages: 653
Release: 2021-11-18
Genre: Mathematics
ISBN: 110898861X

Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 400 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice. Accompanied online by a solutions manual for instructors and source code for problems, this is ideal for a one- or two-semester graduate course on optimization in aerospace, civil, mechanical, electrical, and chemical engineering departments.