What's Math Got to Do with It?

What's Math Got to Do with It?
Author: Jo Boaler
Publisher: Penguin
Total Pages: 296
Release: 2008
Genre: Education
ISBN: 9780670019526

Discusses how to make mathematics for children enjoyable and why it is important for American children to succeed in mathematics and choose math-based career paths in the future.

Mathematics Education for a New Era

Mathematics Education for a New Era
Author: Keith Devlin
Publisher: CRC Press
Total Pages: 220
Release: 2011-02-25
Genre: Computers
ISBN: 1439867712

Stanford mathematician and NPR Math Guy Keith Devlin explains why, fun aside, video games are the ideal medium to teach middle-school math. Aimed primarily at teachers and education researchers, but also of interest to game developers who want to produce videogames for mathematics education, Mathematics Education for a New Era: Video Games as a Med

Strengths-Based Teaching and Learning in Mathematics

Strengths-Based Teaching and Learning in Mathematics
Author: Beth McCord Kobett
Publisher: Corwin Press
Total Pages: 189
Release: 2020-02-27
Genre: Education
ISBN: 1544374925

"This book is a game changer! Strengths-Based Teaching and Learning in Mathematics: 5 Teaching Turnarounds for Grades K- 6 goes beyond simply providing information by sharing a pathway for changing practice. . . Focusing on our students’ strengths should be routine and can be lost in the day-to-day teaching demands. A teacher using these approaches can change the trajectory of students’ lives forever. All teachers need this resource! Connie S. Schrock Emporia State University National Council of Supervisors of Mathematics President, 2017-2019 NEW COVID RESOURCES ADDED: A Parent’s Toolkit to Strengths-Based Learning in Math is now available on the book’s companion website to support families engaged in math learning at home. This toolkit provides a variety of home-based activities and games for families to engage in together. Your game plan for unlocking mathematics by focusing on students’ strengths. We often evaluate student thinking and their work from a deficit point of view, particularly in mathematics, where many teachers have been taught that their role is to diagnose and eradicate students’ misconceptions. But what if instead of focusing on what students don’t know or haven’t mastered, we identify their mathematical strengths and build next instructional steps on students’ points of power? Beth McCord Kobett and Karen S. Karp answer this question and others by highlighting five key teaching turnarounds for improving students’ mathematics learning: identify teaching strengths, discover and leverage students’ strengths, design instruction from a strengths-based perspective, help students identify their points of power, and promote strengths in the school community and at home. Each chapter provides opportunities to stop and consider current practice, reflect, and transfer practice while also sharing · Downloadable resources, activities, and tools · Examples of student work within Grades K–6 · Real teachers’ notes and reflections for discussion It’s time to turn around our approach to mathematics instruction, end deficit thinking, and nurture each student’s mathematical strengths by emphasizing what makes them each unique and powerful.

Making Sense of Mathematics for Teaching High School

Making Sense of Mathematics for Teaching High School
Author: Edward C. Nolan
Publisher: Solution Tree Press
Total Pages: 231
Release: 2016-05-19
Genre: Education
ISBN: 1942496494

Develop a deep understanding of mathematics by grasping the context and purpose behind various strategies. This user-friendly resource presents high school teachers with a logical progression of pedagogical actions, classroom norms, and collaborative teacher team efforts to increase their knowledge and improve mathematics instruction. Explore strategies and techniques to effectively learn and teach significant mathematics concepts and provide all students with the precise, accurate information they need to achieve academic success. Combine student understanding of functions and algebraic concepts so that they can better decipher the world. Benefits Dig deep into mathematical modeling and reasoning to improve as both a learner and teacher of mathematics. Explore how to develop, select, or modify mathematics tasks in order to balance cognitive demand and engage students. Discover the three important norms to uphold in all mathematics classrooms. Learn to apply the tasks, questioning, and evidence (TQE) process to ensure mathematics instruction is focused, coherent, and rigorous. Gain clarity about the most productive progression of mathematical teaching and learning for high school. Watch short videos that show what classrooms that are developing mathematical understanding should look like. Contents Introduction Equations and Functions Structure of Equations Geometry Types of Functions Function Modeling Statistics and Probability Epilogue: Next Steps Appendix: Weight Loss Study Data References Index

The Mathematical Education of Teachers

The Mathematical Education of Teachers
Author: Conference Board of the Mathematical Sciences
Publisher: American Mathematical Soc.
Total Pages: 164
Release: 2001
Genre: Education
ISBN: 9780821828991

Now is a time of great interest in mathematics education. Student performance, curriculum, and teacher education are the subjects of much scrutiny and debate. Studies on the mathematical knowledge of prospective and practicing U. S. teachers suggest ways to improve their mathematical educations. It is often assumed that because the topics covered in K-12 mathematics are so basic, they should be easy to teach. However, research in mathematics education has shown that to teach well,substantial mathematical understanding is necessary--even to teach whole-number arithmetic. Prospective teachers need a solid understanding of mathematics so that they can teach it as a coherent, reasoned activity and communicate its elegance and power. This volume gathers and reports current thinkingon curriculum and policy issues affecting the mathematical education of teachers. It considers two general themes: (1) the intellectual substance in school mathematics; and (2) the special nature of the mathematical knowledge needed for teaching. The underlying study was funded by a grant from the U.S. Department of Education. The mathematical knowledge needed for teaching is quite different from that required by students pursuing other mathematics-related professions. Material here is gearedtoward stimulating efforts on individual campuses to improve programs for prospective teachers. This report contains general recommendations for all grades and extensive discussions of the specific mathematical knowledge required for teaching elementary, middle, and high-school grades, respectively.It is also designed to marshal efforts in the mathematical sciences community to back important national initiatives to improve mathematics education and to expand professional development opportunities. The book will be an important resource for mathematics faculty and other parties involved in the mathematical education of teachers. Information for our distributors: This series is published in cooperation with the Mathematical Association of America.

Critical Issues in Mathematics Education

Critical Issues in Mathematics Education
Author: Bharath Sriraman
Publisher: IAP
Total Pages: 502
Release: 2009-06-01
Genre: Mathematics
ISBN: 1607522187

The word "critical" in the title of this collection has three meanings, all of which are relevant. One meaning, as applied to a situation or problem, is "at a point of crisis". A second meaning is "expressing adverse or disapproving comments or judgments". A third is related to the verb "to critique", meaning "to analyze the merits and faults of". The authors contributing to this book pose challenging questions, from multiple perspectives, about the roles of mathematics in society and the implications for education. Traditional reasons for teaching mathematics include: preparing a new generation of mathematics researchers and a cadre of technically competent users of mathematics; training students to think logically; and because mathematics is as much part of cultural heritage as literature or music. These reasons remain valid, though open to critique, but a deeper analysis is required that recognizes the roles of mathematics in framing many aspects of contemporary society, that will connect mathematics education to the lived experiences of students, their communities, and society in general, and that acknowledges the global ethical responsibilities of mathematicians and mathematics educators. The book is organized in four sections (1) Mathematics education: For what and why? (2) Globalization and cultural diversity, (3) Mathematics, education, and society and (4) Social justice in, and through, mathematics education The chapters address fundamental issues such as the relevance of school mathematics in people's lives; creating a sense of agency for the field of mathematics education, and redefining the relationship between mathematics as discipline, mathematics as school subject and mathematics as part of people's lives.

Visible Learning for Mathematics, Grades K-12

Visible Learning for Mathematics, Grades K-12
Author: John Hattie
Publisher: Corwin Press
Total Pages: 209
Release: 2016-09-15
Genre: Education
ISBN: 1506362958

Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.

Mathematics, Affect and Learning

Mathematics, Affect and Learning
Author: Peter Grootenboer
Publisher: Springer
Total Pages: 145
Release: 2015-10-17
Genre: Education
ISBN: 9812876790

This book examines the beliefs, attitudes, values and emotions of students in Years 5 to 8 (aged 10 to 14 years) about mathematics and mathematics education. Fundamentally, this book focuses on the development of affective views and responses towards mathematics and mathematics learning. Furthermore, it seems that students develop their more negative views of mathematics during the middle school years (Years 5 to 8), and so here we concentrate on students in this critical period. The book is based on a number of empirical studies, including an enquiry undertaken with 45 children in Years 5 and 6 in one school; a large-scale quantitative study undertaken with students from a range of schools across diverse communities in New Zealand; and two related small-scale studies with junior secondary students in Australia. This book brings substantial, empirically-based evidence to the widely held perception that many students have negative views of mathematics, and these affective responses develop during the middle years of school. The data for this book were collected with school students, and students who were actually engaged in learning mathematics in their crucial middle school years. The findings reported and discussed here are relevant for researchers and mathematics educators, policy makers and curriculum developers, and teachers and school principals engaged in the teaching of mathematics.

The Teaching and Learning of Mathematics at University Level

The Teaching and Learning of Mathematics at University Level
Author: Derek Holton
Publisher: Springer Science & Business Media
Total Pages: 559
Release: 2001-09-30
Genre: Education
ISBN: 0792371917

This is a text that contains the latest in thinking and the best in practice. It provides a state-of-the-art statement on tertiary teaching from a multi-perspective standpoint. No previous book has attempted to take such a wide view of the topic. The book will be of special interest to academic mathematicians, mathematics educators, and educational researchers. It arose from the ICMI Study into the teaching and learning of mathematics at university level (initiated at the conference in Singapore, 1998).

Language and Mathematics Education

Language and Mathematics Education
Author: Judit N. Moschkovich
Publisher: Information Age Pub Incorporated
Total Pages: 180
Release: 2010
Genre: Education
ISBN: 9781617351594

A volume in Research in Mathematics Education Series Editor Barbara J. Dougherty, Iowa State University Marketing description: Issues of language in mathematics learning and teaching are important for both practical and theoretical reasons. Addressing issues of language is crucial for improving mathematics learning and teaching for students who are bilingual, multilingual, or learning English. These issues are also relevant to theory: studies that make language visible provide a complex perspective of the role of language in reasoning and learning mathematics. What is the relevant knowledge base to consider when designing research studies that address issues of language in the learning and teaching of mathematics? What scholarly literature is relevant and can contribute to research? In order to address issues of language in mathematics education, researchers need to use theoretical perspectives that integrate current views of mathematics learning and teaching with current views on language, discourse, bilingualism, and second language acquisition. This volume contributes to the development of such integrated approaches to research on language issues in mathematics education by describing theoretical perspectives for framing the study of language issues and methodological issues to consider when designing research studies. The volume provides interdisciplinary reviews of the research literature from four very different perspectives: mathematics education (Moschkovich), Cultural-Historical-Activity Theory (Gutierrez, Sengupta-Irving, & Dieckmann), systemic functional linguistics (Schleppegrell), and assessment (Solano-Flores). This volume offers graduate students and researchers new to the study of language in mathematics education an introduction to resources for conceptualizing, framing, and designing research studies. For those already involved in examining language issues, the volume provides useful and critical reviews of the literature as well as recommendations for moving forward in designing research. Lastly, the volume provides a basis for dialogue across multiple research communities engaged in collaborative work to address these pressing issues.