Mathematical Topics In Neutron Transport Theory: New Aspects

Mathematical Topics In Neutron Transport Theory: New Aspects
Author: Mustapha Mokhtar Kharroubi
Publisher: World Scientific
Total Pages: 372
Release: 1997-12-18
Genre: Science
ISBN: 981449819X

This book presents some recent mathematical developments about neutron transport equations. Several different topics are dealt with including regularity of velocity averages, spectral analysis of transport operators, inverse problems, nonlinear problems arising in the stochastic theory of neutron chain fissions, compactness properties of perturbed of c0-semigroups in Banach spaces with applications to transport theory, Miyadera perturbations of c0-semigroups in Banach spaces with applications to singular transport equations, a thorough analysis of the leading eigenelements of transport operators and their approximation, scattering theory. Besides the new problems addressed in this book a unification and extension of the classical spectral analysis of neutron transport equations is given.

Mathematical Topics in Neutron Transport Theory

Mathematical Topics in Neutron Transport Theory
Author: M. Mokhtar-Kharroubi
Publisher: World Scientific
Total Pages: 372
Release: 1997
Genre: Mathematics
ISBN: 9789810228699

This book presents some recent mathematical developments about neutron transport equations. Several different topics are dealt with including regularity of velocity averages, spectral analysis of transport operators, inverse problems, nonlinear problems arising in the stochastic theory of neutron chain fissions, compactness properties of perturbed of 0-semigroups in Banach spaces with applications to transport theory, Miyadera perturbations of c0-semigroups in Banach spaces with applications to singular transport equations, a thorough analysis of the leading eigenelements of transport operators and their approximation, scattering theory. Besides the new problems addressed in this book a unification and extension of the classical spectral analysis of neutron transport equations is given.

Advances in Mathematics Research

Advances in Mathematics Research
Author: Gabriel Oyibo
Publisher: Nova Publishers
Total Pages: 182
Release: 2003-10-17
Genre: Mathematics
ISBN: 9781590335185

Mathematics has been behind many of humanity's most significant advances in fields as varied as genome sequencing, medical science, space exploration, and computer technology. But those breakthroughs were yesterday. Where will mathematicians lead us tomorrow and can we help shape that destiny? This book assembles carefully selected articles highlighting and explaining cutting-edge research and scholarship in mathematics. Contents: Preface; Solvability of Quasilinear Elliptic Second Order Differential Equations in Rn without Condition at Infinity; Recent Topics on a Class of Nonlinear Integrodifferential Equations of Physical Significance'; Nonparametric Estimation with Censored Observations; Normalisers of Groups Commensurable with PSL2(Z); Spectral Analysis of a Class of Multigroup Neutron Transport Operators in Slab Geometry; Extremum of a Nonlocal Functional Depending on Higher Order Derivatives of the Unknown Function; On Quantum Conditional Probability Spaces; Index.

Evolutionary Equations with Applications in Natural Sciences

Evolutionary Equations with Applications in Natural Sciences
Author: Jacek Banasiak
Publisher: Springer
Total Pages: 505
Release: 2014-11-07
Genre: Mathematics
ISBN: 3319113224

With the unifying theme of abstract evolutionary equations, both linear and nonlinear, in a complex environment, the book presents a multidisciplinary blend of topics, spanning the fields of theoretical and applied functional analysis, partial differential equations, probability theory and numerical analysis applied to various models coming from theoretical physics, biology, engineering and complexity theory. Truly unique features of the book are: the first simultaneous presentation of two complementary approaches to fragmentation and coagulation problems, by weak compactness methods and by using semigroup techniques, comprehensive exposition of probabilistic methods of analysis of long term dynamics of dynamical systems, semigroup analysis of biological problems and cutting edge pattern formation theory. The book will appeal to postgraduate students and researchers specializing in applications of mathematics to problems arising in natural sciences and engineering.

Scattering Theory for Transport Phenomena

Scattering Theory for Transport Phenomena
Author: Hassan Emamirad
Publisher: Springer Nature
Total Pages: 179
Release: 2021-06-27
Genre: Science
ISBN: 9811623732

The scattering theory for transport phenomena was initiated by P. Lax and R. Phillips in 1967. Since then, great progress has been made in the field and the work has been ongoing for more than half a century. This book shows part of that progress. The book is divided into 7 chapters, the first of which deals with preliminaries of the theory of semigroups and C*-algebra, different types of semigroups, Schatten–von Neuman classes of operators, and facts about ultraweak operator topology, with examples using wavelet theory. Chapter 2 goes into abstract scattering theory in a general Banach space. The wave and scattering operators and their basic properties are defined. Some abstract methods such as smooth perturbation and the limiting absorption principle are also presented. Chapter 3 is devoted to the transport or linearized Boltzmann equation, and in Chapter 4 the Lax and Phillips formalism is introduced in scattering theory for the transport equation. In their seminal book, Lax and Phillips introduced the incoming and outgoing subspaces, which verify their representation theorem for a dissipative hyperbolic system initially and also matches for the transport problem. By means of these subspaces, the Lax and Phillips semigroup is defined and it is proved that this semigroup is eventually compact, hence hyperbolic. Balanced equations give rise to two transport equations, one of which can satisfy an advection equation and one of which will be nonautonomous. For generating, the Howland semigroup and Howland’s formalism must be used, as shown in Chapter 5. Chapter 6 is the highlight of the book, in which it is explained how the scattering operator for the transport problem by using the albedo operator can lead to recovery of the functionality of computerized tomography in medical science. The final chapter introduces the Wigner function, which connects the Schrödinger equation to statistical physics and the Husimi distribution function. Here, the relationship between the Wigner function and the quantum dynamical semigroup (QDS) can be seen.

Spectral Theory and Applications of Linear Operators and Block Operator Matrices

Spectral Theory and Applications of Linear Operators and Block Operator Matrices
Author: Aref Jeribi
Publisher: Springer
Total Pages: 608
Release: 2015-07-04
Genre: Science
ISBN: 3319175661

Examining recent mathematical developments in the study of Fredholm operators, spectral theory and block operator matrices, with a rigorous treatment of classical Riesz theory of polynomially-compact operators, this volume covers both abstract and applied developments in the study of spectral theory. These topics are intimately related to the stability of underlying physical systems and play a crucial role in many branches of mathematics as well as numerous interdisciplinary applications. By studying classical Riesz theory of polynomially compact operators in order to establish the existence results of the second kind operator equations, this volume will assist the reader working to describe the spectrum, multiplicities and localization of the eigenvalues of polynomially-compact operators.

Semigroups of Operators -Theory and Applications

Semigroups of Operators -Theory and Applications
Author: Jacek Banasiak
Publisher: Springer
Total Pages: 338
Release: 2014-11-20
Genre: Mathematics
ISBN: 3319121456

Many results, both from semi group theory itself and from the applied sciences, are phrased in discipline-specific languages and hence are hardly known to a broader community. This volume contains a selection of lectures presented at a conference that was organised as a forum for all mathematicians using semi group theory to learn what is happening outside their own field of research. The collection will help to establish a number of new links between various sub-disciplines of semigroup theory, stochastic processes, differential equations and the applied fields. The theory of semigroups of operators is a well-developed branch of functional analysis. Its foundations were laid at the beginning of the 20th century, while the fundamental generation theorem of Hille and Yosida dates back to the forties. The theory was, from the very beginning, designed as a universal language for partial differential equations and stochastic processes, but at the same time it started to live as an independent branch of operator theory. Nowadays, it still has the same distinctive flavour: it develops rapidly by posing new ‘internal’ questions and in answering them, discovering new methods that can be used in applications. On the other hand, it is influenced by questions from PDEs and stochastic processes as well as from applied sciences such as mathematical biology and optimal control, and thus it continually gathers a new momentum. Researchers and postgraduate students working in operator theory, partial differential equations, probability and stochastic processes, analytical methods in biology and other natural sciences, optimization and optimal control will find this volume useful.

Nonlinear Functional Analysis and Applications

Nonlinear Functional Analysis and Applications
Author: Jesús Garcia-Falset
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 466
Release: 2023-03-06
Genre: Mathematics
ISBN: 3111031810

Nonlinear functional analysis is a central subject of mathematics with applications in many areas of geometry, analysis, fl uid and elastic mechanics, physics, chemistry, biology, control theory, optimization, game theory, economics etc. This work is devoted, in a self-contained way, to several subjects of this topic such as theory of accretive operators in Banach spaces, theory of abstract Cauchy problem, metric and topological fixed point theory. Special emphasis is given to the study how these theories can be used to obtain existence and uniqueness of solutions for several types of evolution and stationary equations. In particular, equations arising in dynamical population and neutron transport equations are discussed.

Integral Methods in Science and Engineering

Integral Methods in Science and Engineering
Author: Christian Constanda
Publisher: Springer Science & Business Media
Total Pages: 410
Release: 2013-08-13
Genre: Mathematics
ISBN: 1461478286

​​Advances in science and technology are driven by the development of rigorous mathematical foundations for the study of both theoretical and experimental models. With certain methodological variations, this type of study always comes down to the application of analytic or computational integration procedures, making such tools indispensible. With a wealth of cutting-edge research in the field, Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques provides a detailed portrait of both the construction of theoretical integral techniques and their application to specific problems in science and engineering. The chapters in this volume are based on talks given by well-known researchers at the Twelfth International Conference on Integral Methods in Science and Engineering, July 23–27, 2012, in Porto Alegre, Brazil. They address a broad range of topics, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches. The contributing authors bring their expertise to bear on a number of topical problems that have to date resisted solution, thereby offering help and guidance to fellow professionals worldwide. Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques will be a valuable resource for researchers in applied mathematics, physics, and mechanical and electrical engineering, for graduate students in these disciplines, and for various other professionals who use integration as an essential tool in their work.​

Stochastic Neutron Transport

Stochastic Neutron Transport
Author: Emma Horton
Publisher: Springer Nature
Total Pages: 278
Release: 2023-12-17
Genre: Mathematics
ISBN: 3031395468

This monograph highlights the connection between the theory of neutron transport and the theory of non-local branching processes. By detailing this frequently overlooked relationship, the authors provide readers an entry point into several active areas, particularly applications related to general radiation transport. Cutting-edge research published in recent years is collected here for convenient reference. Organized into two parts, the first offers a modern perspective on the relationship between the neutron branching process (NBP) and the neutron transport equation (NTE), as well as some of the core results concerning the growth and spread of mass of the NBP. The second part generalizes some of the theory put forward in the first, offering proofs in a broader context in order to show why NBPs are as malleable as they appear to be. Stochastic Neutron Transport will be a valuable resource for probabilists, and may also be of interest to numerical analysts and engineers in the field of nuclear research.