Uncertainty and Vagueness in Knowledge Based Systems

Uncertainty and Vagueness in Knowledge Based Systems
Author: Rudolf Kruse
Publisher: Springer Science & Business Media
Total Pages: 495
Release: 2012-12-06
Genre: Computers
ISBN: 3642767028

The primary aim of this monograph is to provide a formal framework for the representation and management of uncertainty and vagueness in the field of artificial intelligence. It puts particular emphasis on a thorough analysis of these phenomena and on the development of sound mathematical modeling approaches. Beyond this theoretical basis the scope of the book includes also implementational aspects and a valuation of existing models and systems. The fundamental ambition of this book is to show that vagueness and un certainty can be handled adequately by using measure-theoretic methods. The presentation of applicable knowledge representation formalisms and reasoning algorithms substantiates the claim that efficiency requirements do not necessar ily require renunciation of an uncompromising mathematical modeling. These results are used to evaluate systems based on probabilistic methods as well as on non-standard concepts such as certainty factors, fuzzy sets or belief functions. The book is intended to be self-contained and addresses researchers and practioneers in the field of knowledge based systems. It is in particular suit able as a textbook for graduate-level students in AI, operations research and applied probability. A solid mathematical background is necessary for reading this book. Essential parts of the material have been the subject of courses given by the first author for students of computer science and mathematics held since 1984 at the University in Braunschweig.

Handbook of Defeasible Reasoning and Uncertainty Management Systems

Handbook of Defeasible Reasoning and Uncertainty Management Systems
Author: Dov M. Gabbay
Publisher: Springer Science & Business Media
Total Pages: 518
Release: 2013-04-17
Genre: Mathematics
ISBN: 9401717370

Reasoning under uncertainty is always based on a specified language or for malism, including its particular syntax and semantics, but also on its associated inference mechanism. In the present volume of the handbook the last aspect, the algorithmic aspects of uncertainty calculi are presented. Theory has suffi ciently advanced to unfold some generally applicable fundamental structures and methods. On the other hand, particular features of specific formalisms and ap proaches to uncertainty of course still influence strongly the computational meth ods to be used. Both general as well as specific methods are included in this volume. Broadly speaking, symbolic or logical approaches to uncertainty and nu merical approaches are often distinguished. Although this distinction is somewhat misleading, it is used as a means to structure the present volume. This is even to some degree reflected in the two first chapters, which treat fundamental, general methods of computation in systems designed to represent uncertainty. It has been noted early by Shenoy and Shafer, that computations in different domains have an underlying common structure. Essentially pieces of knowledge or information are to be combined together and then focused on some particular question or domain. This can be captured in an algebraic structure called valuation algebra which is described in the first chapter. Here the basic operations of combination and focus ing (marginalization) of knowledge and information is modeled abstractly subject to simple axioms.

Uncertain Programming

Uncertain Programming
Author: Baoding Liu
Publisher: Wiley-Interscience
Total Pages: 272
Release: 1999
Genre: Computers
ISBN:

An up-to-date, authoritative, comprehensive look at optimization theory in uncertain environments Real-life management decisions, such as buy/sell decisions in the stock market, are almost always made in uncertain environments. Is it possible to make model decision problems to fit these circumstances? Once constructed, can these models be solved? In Uncertain Programming, Baoding Liu answers both of these questions in the affirmative and goes on to lay a solid foundation for optimization in generally uncertain environments. Uncertain Programming describes the basic concepts of mathematical programming, provides a genetic algorithm for optimization problems, and introduces the techniques of stochastic and fuzzy simulation. After examining some basic results of expected value models, the book moves on to explore chance-constrained programming with stochastic parameters and illustrate applications of chance-constrained programming models. Dr. Liu discusses dependent-chance programming in stochastic environments and extends both chance-constrained and dependent-chance programming from stochastic to fuzzy environments. He then constructs a theoretical framework for fuzzy programming with fuzzy rather than crisp decisions. This remarkable and revolutionary book: * Lays a foundation for optimization theory in uncertain environments * Provides a unifying principle for dealing with stochastic and fuzzy programming * Incorporates the most recent developments in the field * Emphasizes modeling ideas, evolutionary computation, and applications of uncertain programming Uncertain Programming is a reliable, authoritative, and eye-opening guide for researchers and engineers in operations research, management science, business management, information and systems science, and computer science.

Approximate Dynamic Programming

Approximate Dynamic Programming
Author: Warren B. Powell
Publisher: John Wiley & Sons
Total Pages: 487
Release: 2007-10-05
Genre: Mathematics
ISBN: 0470182954

A complete and accessible introduction to the real-world applications of approximate dynamic programming With the growing levels of sophistication in modern-day operations, it is vital for practitioners to understand how to approach, model, and solve complex industrial problems. Approximate Dynamic Programming is a result of the author's decades of experience working in large industrial settings to develop practical and high-quality solutions to problems that involve making decisions in the presence of uncertainty. This groundbreaking book uniquely integrates four distinct disciplines—Markov design processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully model and solve a wide range of real-life problems using the techniques of approximate dynamic programming (ADP). The reader is introduced to the three curses of dimensionality that impact complex problems and is also shown how the post-decision state variable allows for the use of classical algorithmic strategies from operations research to treat complex stochastic optimization problems. Designed as an introduction and assuming no prior training in dynamic programming of any form, Approximate Dynamic Programming contains dozens of algorithms that are intended to serve as a starting point in the design of practical solutions for real problems. The book provides detailed coverage of implementation challenges including: modeling complex sequential decision processes under uncertainty, identifying robust policies, designing and estimating value function approximations, choosing effective stepsize rules, and resolving convergence issues. With a focus on modeling and algorithms in conjunction with the language of mainstream operations research, artificial intelligence, and control theory, Approximate Dynamic Programming: Models complex, high-dimensional problems in a natural and practical way, which draws on years of industrial projects Introduces and emphasizes the power of estimating a value function around the post-decision state, allowing solution algorithms to be broken down into three fundamental steps: classical simulation, classical optimization, and classical statistics Presents a thorough discussion of recursive estimation, including fundamental theory and a number of issues that arise in the development of practical algorithms Offers a variety of methods for approximating dynamic programs that have appeared in previous literature, but that have never been presented in the coherent format of a book Motivated by examples from modern-day operations research, Approximate Dynamic Programming is an accessible introduction to dynamic modeling and is also a valuable guide for the development of high-quality solutions to problems that exist in operations research and engineering. The clear and precise presentation of the material makes this an appropriate text for advanced undergraduate and beginning graduate courses, while also serving as a reference for researchers and practitioners. A companion Web site is available for readers, which includes additional exercises, solutions to exercises, and data sets to reinforce the book's main concepts.

Foundations of Reasoning under Uncertainty

Foundations of Reasoning under Uncertainty
Author: Bernadette Bouchon-Meunier
Publisher: Springer
Total Pages: 272
Release: 2010-01-11
Genre: Technology & Engineering
ISBN: 3642107281

Uncertainty exists almost everywhere, except in the most idealized situations; it is not only an inevitable and ubiquitous phenomenon, but also a fundamental sci- ti?c principle. Furthermore, uncertainty is an attribute of information and, usually, decision-relevant information is uncertain and/or imprecise, therefore the abilities to handle uncertain information and to reason from incomplete knowledge are c- cial features of intelligent behaviour in complex and dynamic environments. By carefully exploiting our tolerance for imprecision and approximation we can often achieve tractability, robustness, and better descriptions of reality than traditional - ductive methods would allow us to obtain. In conclusion, as we move further into the ageofmachineintelligence,theproblemofreasoningunderuncertainty,in other words, drawing conclusions from partial knowledge, has become a major research theme. Not surprisingly,the rigoroustreatment of uncertaintyrequiressophisticated - chinery, and the present volume is conceived as a contribution to a better und- standing of the foundations of information processing and decision-making in an environment of uncertainty, imprecision and partiality of truth. This volume draws on papers presented at the 2008 Conference on Information Processing and Management of Uncertainty (IPMU), held in Malaga, ́ Spain, or- nized by the University of Mal ́ aga. The conference brought together some of the world’s leading experts in the study of uncertainty.

Symbolic and Quantitative Approaches to Reasoning with Uncertainty

Symbolic and Quantitative Approaches to Reasoning with Uncertainty
Author: Gabriele Kern-Isberner
Publisher: Springer Nature
Total Pages: 516
Release: 2019-09-04
Genre: Computers
ISBN: 3030297659

This book constitutes the refereed proceedings of the 15th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2019, held in Belgrade, Serbia, in September 2019. The 41 full papers presented together with 3 abstracts of invited talks inn this volume were carefully reviewed and selected from 62 submissions. The papers are organized in topical sections named: Argumentation; Belief Functions; Conditional, Default and Analogical Reasoning; Learning and Decision Making; Precise and Imprecise Probabilities; and Uncertain Reasoning for Applications.

Algorithms for Decision Making

Algorithms for Decision Making
Author: Mykel J. Kochenderfer
Publisher: MIT Press
Total Pages: 701
Release: 2022-08-16
Genre: Computers
ISBN: 0262370239

A broad introduction to algorithms for decision making under uncertainty, introducing the underlying mathematical problem formulations and the algorithms for solving them. Automated decision-making systems or decision-support systems—used in applications that range from aircraft collision avoidance to breast cancer screening—must be designed to account for various sources of uncertainty while carefully balancing multiple objectives. This textbook provides a broad introduction to algorithms for decision making under uncertainty, covering the underlying mathematical problem formulations and the algorithms for solving them. The book first addresses the problem of reasoning about uncertainty and objectives in simple decisions at a single point in time, and then turns to sequential decision problems in stochastic environments where the outcomes of our actions are uncertain. It goes on to address model uncertainty, when we do not start with a known model and must learn how to act through interaction with the environment; state uncertainty, in which we do not know the current state of the environment due to imperfect perceptual information; and decision contexts involving multiple agents. The book focuses primarily on planning and reinforcement learning, although some of the techniques presented draw on elements of supervised learning and optimization. Algorithms are implemented in the Julia programming language. Figures, examples, and exercises convey the intuition behind the various approaches presented.

Theory and Practice of Uncertain Programming

Theory and Practice of Uncertain Programming
Author: Baoding Liu
Publisher: Physica
Total Pages: 384
Release: 2013-04-17
Genre: Computers
ISBN: 3790817813

Real-life decisions are usually made in the state of uncertainty (randomness, fuzziness, roughness, etc.). How do we model optimization problems in uncertain environments? How do we solve these models? In order to answer these questions, this book provides a self-contained, comprehensive and up-to-date presentation of uncertain programming theory. It includes numerous modeling ideas, hybrid intelligent algorithms, and various applications in transportation problem, inventory system, facility location & allocation, capital budgeting, topological optimization, vehicle routing problem, redundancy optimization, and scheduling. Researchers, practitioners and students in operations research, management science, information science, system science, and engineering will find this work a stimulating and useful reference.