Mathematical Physics Research at the Cutting Edge

Mathematical Physics Research at the Cutting Edge
Author: Charles V. Benton
Publisher: Nova Publishers
Total Pages: 286
Release: 2004
Genre: Mathematics
ISBN: 9781590339398

Physics and mathematics have always been closely intertwined, with developments in one field frequently inspiring the other. Currently, there are many unsolved problems in physics which will likely require innovations in mathematical physics. Mathematical physics is concerned with problems in statistical mechanics, atomic and molecular physics, quantum field theory, and, in general, with the mathematical foundations of theoretical physics. mechanics (both nonrelativistic and relativistic), atomic and molecular physics, the existence and properties of the phases of model ferromagnets, the stability of matter, the theory of symmetry and symmetry breaking in quantum field theory (both in general and in concrete models), and mathematical developments in functional analysis and algebra to which such subjects lead. This book presents leading-edge research in this fast-moving field. Structure of the Kalb-Ramond Gauge Symmetry and Spinor Representations; Group Theoretical Interpretation of CPT-Theorem; Cross Recurrence Plots and Their Applications; Analytical Solutions of the Radiative Transfer Equation in One-dimensional Spherical Geometry With Central Symmetry; Hyperspherical Functions and Harmonic Analysis on the Lorentz Group; The Next Stage: Quantum Game Theory; Index.

Mathematical Physics in Theoretical Chemistry

Mathematical Physics in Theoretical Chemistry
Author: S.M. Blinder
Publisher: Elsevier
Total Pages: 426
Release: 2018-11-26
Genre: Science
ISBN: 0128137010

Mathematical Physics in Theoretical Chemistry deals with important topics in theoretical and computational chemistry. Topics covered include density functional theory, computational methods in biological chemistry, and Hartree-Fock methods. As the second volume in the Developments in Physical & Theoretical Chemistry series, this volume further highlights the major advances and developments in research, also serving as a basis for advanced study. With a multidisciplinary and encompassing structure guided by a highly experienced editor, the series is designed to enable researchers in both academia and industry stay abreast of developments in physical and theoretical chemistry. - Brings together the most important aspects and recent advances in theoretical and computational chemistry - Covers computational methods for small molecules, density-functional methods, and computational chemistry on personal and quantum computers - Presents cutting-edge developments in theoretical and computational chemistry that are applicable to graduate students and research professionals in chemistry, physics, materials science and biochemistry

Symmetry and the Standard Model

Symmetry and the Standard Model
Author: Matthew Robinson
Publisher: Springer Science & Business Media
Total Pages: 343
Release: 2011-08-17
Genre: Science
ISBN: 1441982671

While theoretical particle physics is an extraordinarily fascinating field, the incredibly fast pace at which it moves along, combined with the huge amount of background information necessary to perform cutting edge research, poses a formidable challenge for graduate students. This book represents the first in a series designed to assist students in the process of transitioning from coursework to research in particle physics. Rather than reading literally dozens of physics and mathematics texts, trying to assimilate the countless ideas, translate notations and perspectives, and see how it all fits together to get a holistic understanding, this series provides a detailed overview of the major mathematical and physical ideas in theoretical particle physics. Ultimately the ideas will be presented in a unified, consistent, holistic picture, where each topic is built firmly on what has come before, and all topics are related in a clear and intuitive way. This introductory text on quantum field theory and particle physics provides both a self-contained and complete introduction to not only the necessary physical ideas, but also a complete introduction to the necessary mathematical tools. Assuming minimal knowledge of undergraduate physics and mathematics, this book lays both the mathematical and physical groundwork with clear, intuitive explanations and plenty of examples. The book then continues with an exposition of the Standard Model of Particle Physics, the theory that currently seems to explain the universe apart from gravity. Furthermore, this book was written as a primer for the more advanced mathematical and physical ideas to come later in this series.

Perturbative Algebraic Quantum Field Theory

Perturbative Algebraic Quantum Field Theory
Author: Kasia Rejzner
Publisher: Springer
Total Pages: 186
Release: 2016-03-16
Genre: Science
ISBN: 3319259016

Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities and works on a large class of Lorenzian manifolds. We discuss in detail the examples of scalar fields, gauge theories and the effective quantum gravity. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all, of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses effective quantum gravity. The book aims to be accessible to researchers and graduate students, who are interested in the mathematical foundations of pQFT.

The Calabi–Yau Landscape

The Calabi–Yau Landscape
Author: Yang-Hui He
Publisher: Springer Nature
Total Pages: 214
Release: 2021-07-31
Genre: Mathematics
ISBN: 3030775623

Can artificial intelligence learn mathematics? The question is at the heart of this original monograph bringing together theoretical physics, modern geometry, and data science. The study of Calabi–Yau manifolds lies at an exciting intersection between physics and mathematics. Recently, there has been much activity in applying machine learning to solve otherwise intractable problems, to conjecture new formulae, or to understand the underlying structure of mathematics. In this book, insights from string and quantum field theory are combined with powerful techniques from complex and algebraic geometry, then translated into algorithms with the ultimate aim of deriving new information about Calabi–Yau manifolds. While the motivation comes from mathematical physics, the techniques are purely mathematical and the theme is that of explicit calculations. The reader is guided through the theory and provided with explicit computer code in standard software such as SageMath, Python and Mathematica to gain hands-on experience in applications of artificial intelligence to geometry. Driven by data and written in an informal style, The Calabi–Yau Landscape makes cutting-edge topics in mathematical physics, geometry and machine learning readily accessible to graduate students and beyond. The overriding ambition is to introduce some modern mathematics to the physicist, some modern physics to the mathematician, and machine learning to both.

Density Functional Theory

Density Functional Theory
Author: Eberhard Engel
Publisher: Springer Science & Business Media
Total Pages: 543
Release: 2011-02-14
Genre: Science
ISBN: 3642140904

Density Functional Theory (DFT) has firmly established itself as the workhorse for atomic-level simulations of condensed phases, pure or composite materials and quantum chemical systems. This work offers a rigorous and detailed introduction to the foundations of this theory, up to and including such advanced topics as orbital-dependent functionals as well as both time-dependent and relativistic DFT. Given the many ramifications of contemporary DFT, the text concentrates on the self-contained presentation of the basics of the most widely used DFT variants: this implies a thorough discussion of the corresponding existence theorems and effective single particle equations, as well as of key approximations utilized in implementations. The formal results are complemented by selected quantitative results, which primarily aim at illustrating the strengths and weaknesses of particular approaches or functionals. The structure and content of this book allow a tutorial and modular self-study approach: the reader will find that all concepts of many-body theory which are indispensable for the discussion of DFT - such as the single-particle Green's function or response functions - are introduced step by step, along with the actual DFT material. The same applies to basic notions of solid state theory, such as the Fermi surface of inhomogeneous, interacting systems. In fact, even the language of second quantization is introduced systematically in an Appendix for readers without formal training in many-body theory.

A High School First Course in Euclidean Plane Geometry

A High School First Course in Euclidean Plane Geometry
Author: Charles H. Aboughantous
Publisher: Universal-Publishers
Total Pages: 166
Release: 2010-10
Genre: Mathematics
ISBN: 1599428229

A High School First Course in Euclidean Plane Geometry is intended to be a first course in plane geometry at the high school level. Individuals who do not have a formal background in geometry can also benefit from studying the subject using this book. The content of the book is based on Euclid's five postulates of plane geometry and the most common theorems. It promotes the art and the skills of developing logical proofs. Most of the theorems are provided with detailed proofs. A large number of sample problems are presented throughout the book with detailed solutions. Practice problems are included at the end of each chapter and are presented in three groups: geometric construction problems, computational problems, and theorematical problems. The answers to the computational problems are included at the end of the book. Many of those problems are simplified classic engineering problems that can be solved by average students. The detailed solutions to all the problems in the book are contained in the Solutions Manual. A High School First Course in Euclidean Plane Geometry is the distillation of the author's experience in teaching geometry over many years in U.S. high schools and overseas. The book is best described in the introduction. The prologue offers a study guide to get the most benefits from the book.