Mathematical Models In The Biosciences Ii
Download Mathematical Models In The Biosciences Ii full books in PDF, epub, and Kindle. Read online free Mathematical Models In The Biosciences Ii ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Michael Frame |
Publisher | : Yale University Press |
Total Pages | : 493 |
Release | : 2021 |
Genre | : Biological systems |
ISBN | : 0300253699 |
Volume Two of an award-winning professor's introduction to essential concepts of calculus and mathematical modeling for students in the biosciences This is the second of a two-part series exploring essential concepts of calculus in the context of biological systems. Building on the essential ideas and theories of basic calculus taught in Mathematical Models in the Biosciences I, this book focuses on epidemiological models, mathematical foundations of virus and antiviral dynamics, ion channel models and cardiac arrhythmias, vector calculus and applications, and evolutionary models of disease. It also develops differential equations and stochastic models of many biomedical processes, as well as virus dynamics, the Clancy-Rudy model to determine the genetic basis of cardiac arrhythmias, and a sketch of some systems biology. Based on the author's calculus class at Yale, the book makes concepts of calculus less abstract and more relatable for science majors and premedical students.
Author | : James Sneyd |
Publisher | : Springer Science & Business Media |
Total Pages | : 228 |
Release | : 2005-06-22 |
Genre | : Mathematics |
ISBN | : 9783540254393 |
This book presents a series of models in the general area of cell physiology and signal transduction, with particular attention being paid to intracellular calcium dynamics, and the role played by calcium in a variety of cell types. Calcium plays a crucial role in cell physiology, and the study of its dynamics lends insight into many different cellular processes. In particular, calcium plays a central role in muscular contraction, olfactory transduction and synaptic communication, three of the topics to be addressed in detail in this book. In addition to the models, much of the underlying physiology is presented, so that readers may learn both the mathematics and the physiology, and see how the models are applied to specific biological questions. It is intended primarily as a graduate text or a research reference. It will serve as a concise and up-to-date introduction to all those who wish to learn about the state of calcium dynamics modeling, and how such models are applied to physiological questions.
Author | : Elizabeth Spencer Allman |
Publisher | : Cambridge University Press |
Total Pages | : 388 |
Release | : 2004 |
Genre | : Mathematics |
ISBN | : 9780521525862 |
This introductory textbook on mathematical biology focuses on discrete models across a variety of biological subdisciplines. Biological topics treated include linear and non-linear models of populations, Markov models of molecular evolution, phylogenetic tree construction, genetics, and infectious disease models. The coverage of models of molecular evolution and phylogenetic tree construction from DNA sequence data is unique among books at this level. Computer investigations with MATLAB are incorporated throughout, in both exercises and more extensive projects, to give readers hands-on experience with the mathematical models developed. MATLAB programs accompany the text. Mathematical tools, such as matrix algebra, eigenvector analysis, and basic probability, are motivated by biological models and given self-contained developments, so that mathematical prerequisites are minimal.
Author | : Michael Frame |
Publisher | : Yale University Press |
Total Pages | : 542 |
Release | : 2021-06-22 |
Genre | : Mathematics |
ISBN | : 0300258429 |
An award-winning professor’s introduction to essential concepts of calculus and mathematical modeling for students in the biosciences This is the first of a two-part series exploring essential concepts of calculus in the context of biological systems. Michael Frame covers essential ideas and theories of basic calculus and probability while providing examples of how they apply to subjects like chemotherapy and tumor growth, chemical diffusion, allometric scaling, predator-prey relations, and nerve impulses. Based on the author’s calculus class at Yale University, the book makes concepts of calculus more relatable for science majors and premedical students.
Author | : Alan Garfinkel |
Publisher | : Springer |
Total Pages | : 456 |
Release | : 2017-09-06 |
Genre | : Mathematics |
ISBN | : 3319597310 |
This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?
Author | : Sarah P. Otto |
Publisher | : Princeton University Press |
Total Pages | : 745 |
Release | : 2011-09-19 |
Genre | : Science |
ISBN | : 1400840910 |
Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available
Author | : Jerry J. Batzel |
Publisher | : Springer |
Total Pages | : 270 |
Release | : 2012-12-14 |
Genre | : Mathematics |
ISBN | : 3642328822 |
This volume synthesizes theoretical and practical aspects of both the mathematical and life science viewpoints needed for modeling of the cardiovascular-respiratory system specifically and physiological systems generally. Theoretical points include model design, model complexity and validation in the light of available data, as well as control theory approaches to feedback delay and Kalman filter applications to parameter identification. State of the art approaches using parameter sensitivity are discussed for enhancing model identifiability through joint analysis of model structure and data. Practical examples illustrate model development at various levels of complexity based on given physiological information. The sensitivity-based approaches for examining model identifiability are illustrated by means of specific modeling examples. The themes presented address the current problem of patient-specific model adaptation in the clinical setting, where data is typically limited.
Author | : Alexander Anderson |
Publisher | : Springer Science & Business Media |
Total Pages | : 346 |
Release | : 2007-08-08 |
Genre | : Mathematics |
ISBN | : 376438123X |
Aimed at postgraduate students in a variety of biology-related disciplines, this volume presents a collection of mathematical and computational single-cell-based models and their application. The main sections cover four general model groupings: hybrid cellular automata, cellular potts, lattice-free cells, and viscoelastic cells. Each section is introduced by a discussion of the applicability of the particular modelling approach and its advantages and disadvantages, which will make the book suitable for students starting research in mathematical biology as well as scientists modelling multicellular processes.
Author | : Alison Etheridge |
Publisher | : Springer Science & Business Media |
Total Pages | : 129 |
Release | : 2011-01-07 |
Genre | : Mathematics |
ISBN | : 3642166318 |
This work reflects sixteen hours of lectures delivered by the author at the 2009 St Flour summer school in probability. It provides a rapid introduction to a range of mathematical models that have their origins in theoretical population genetics. The models fall into two classes: forwards in time models for the evolution of frequencies of different genetic types in a population; and backwards in time (coalescent) models that trace out the genealogical relationships between individuals in a sample from the population. Some, like the classical Wright-Fisher model, date right back to the origins of the subject. Others, like the multiple merger coalescents or the spatial Lambda-Fleming-Viot process are much more recent. All share a rich mathematical structure. Biological terms are explained, the models are carefully motivated and tools for their study are presented systematically.
Author | : Avner Friedman |
Publisher | : American Mathematical Soc. |
Total Pages | : 112 |
Release | : 2018-06-14 |
Genre | : Mathematics |
ISBN | : 1470447150 |
The fast growing field of mathematical biology addresses biological questions using mathematical models from areas such as dynamical systems, probability, statistics, and discrete mathematics. This book considers models that are described by systems of partial differential equations, and it focuses on modeling, rather than on numerical methods and simulations. The models studied are concerned with population dynamics, cancer, risk of plaque growth associated with high cholesterol, and wound healing. A rich variety of open problems demonstrates the exciting challenges and opportunities for research at the interface of mathematics and biology. This book primarily addresses students and researchers in mathematics who do not necessarily have any background in biology and who may have had little exposure to PDEs.