Modelling Mathematical Methods and Scientific Computation

Modelling Mathematical Methods and Scientific Computation
Author: Nicola Bellomo
Publisher: CRC Press
Total Pages: 516
Release: 1994-12-22
Genre: Mathematics
ISBN: 9780849383311

Addressed to engineers, scientists, and applied mathematicians, this book explores the fundamental aspects of mathematical modelling in applied sciences and related mathematical and computational methods. After providing the general framework needed for mathematical modelling-definitions, classifications, general modelling procedures, and validation methods-the authors deal with the analysis of discrete models. This includes modelling methods and related mathematical methods. The analysis of models is defined in terms of ordinary differential equations. The analysis of continuous models, particularly models defined in terms of partial differential equations, follows. The authors then examine inverse type problems and stochastic modelling. Three appendices provide a concise guide to functional analysis, approximation theory, and probability, and a diskette included with the book includes ten scientific programs to introduce the reader to scientific computation at a practical level.

Scientific Computing with Mathematica®

Scientific Computing with Mathematica®
Author: Addolorata Marasco
Publisher: Springer Science & Business Media
Total Pages: 278
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461201519

Many interesting behaviors of real physical, biological, economical, and chemical systems can be described by ordinary differential equations (ODEs). Scientific Computing with Mathematica for Ordinary Differential Equations provides a general framework useful for the applications, on the conceptual aspects of the theory of ODEs, as well as a sophisticated use of Mathematica software for the solutions of problems related to ODEs. In particular, a chapter is devoted to the use ODEs and Mathematica in the Dynamics of rigid bodies. Mathematical methods and scientific computation are dealt with jointly to supply a unified presentation. The main problems of ordinary differential equations such as, phase portrait, approximate solutions, periodic orbits, stability, bifurcation, and boundary problems are covered in an integrated fashion with numerous worked examples and computer program demonstrations using Mathematica. Topics and Features:*Explains how to use the Mathematica package ODE.m to support qualitative and quantitative problem solving *End-of- chapter exercise sets incorporating the use of Mathematica programs *Detailed description and explanation of the mathematical procedures underlying the programs written in Mathematica *Appendix describing the use of ten notebooks to guide the reader through all the exercises. This book is an essential text/reference for students, graduates and practitioners in applied mathematics and engineering interested in ODE's problems in both the qualitative and quantitative description of solutions with the Mathematica program. It is also suitable as a self-

Mathematical Modelling and Scientific Computing with Applications

Mathematical Modelling and Scientific Computing with Applications
Author: Santanu Manna
Publisher: Springer Nature
Total Pages: 467
Release: 2020-02-14
Genre: Mathematics
ISBN: 9811513384

This book contains original research papers presented at the International Conference on Mathematical Modelling and Scientific Computing, held at the Indian Institute of Technology Indore, India, on 19–21 July 2018. Organized into 30 chapters, the book presents the recent progress and the most advanced innovations, trends, and real-world challenges encountered and solutions embraced in the applications of mathematics and scientific computing. The book will be of interests to a wide variety of researchers, students and the practicing engineers working in diverse areas of science and engineering, ranging from applied and computational mathematics, vibration problem, computer science, and numerical optimization to physics, chemistry, biology, electrical, civil, mechanical, chemical, seismology, aerospace, and medical sciences. The aim of the conference is to bring together leading academicians, scientists, researchers, engineers, and industry partners from all over the globe to exchange and share their experiences and research results on various aspects of applied mathematics and scientific computation, like, differential equation, modeling, simulation, dynamical systems, numerical analysis, matrix theory, inverse problems, and solid and fluid mechanics, computational engineering.

Data-Driven Modeling & Scientific Computation

Data-Driven Modeling & Scientific Computation
Author: Jose Nathan Kutz
Publisher:
Total Pages: 657
Release: 2013-08-08
Genre: Computers
ISBN: 0199660336

Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.

Large Scale Scientific Computing

Large Scale Scientific Computing
Author: Deuflhard
Publisher: Springer Science & Business Media
Total Pages: 390
Release: 2012-12-06
Genre: Mathematics
ISBN: 1468467549

In this book, the new and rapidly expanding field of scientific computing is understood in a double sense: as computing for scientific and engineering problems and as the science of doing such computations. Thus scientific computing touches at one side mathematical modelling (in the various fields of applications) and at the other side computer science. As soon as the mathematical models de scribe the features of real life processes in sufficient detail, the associated computations tend to be large scale. As a consequence, interest more and more focusses on such numerical methods that can be expected to cope with large scale computational problems. Moreover, given the algorithms which are known to be efficient on a tradi tional computer, the question of implementation on modern supercomputers may get crucial. The present book is the proceedings of a meeting on "Large Scale Scientific Computing" , that was held a t the Oberwolfach Mathematical Institute (July 14-19, 1985) under the auspices of the Sonderforschungsbereich 123 of the University of Heidelberg. Participants included applied scientists with computational interests, numerical analysts, and experts on modern parallel computers. 'l'he purpose of the meeting was to establish a common under standing of recent issues in scientific computing, especially in view of large scale problems. Fields of applications, which have been covered, included semi-conductor design, chemical combustion, flow through porous media, climatology, seismology, fluid dynami. cs, tomography, rheology, hydro power plant optimization, subwil. y control, space technology.

Mathematical Modeling and Computational Science

Mathematical Modeling and Computational Science
Author: Gheorghe Adam
Publisher: Springer
Total Pages: 346
Release: 2012-02-21
Genre: Computers
ISBN: 3642282121

This book constitutes the refereed post-proceedings of the International Conference on Mathematical Modeling and Computational Physics, MMCP 2011, held in Stará Lesná, Slovakia, in July 2011. The 41 revised papers presented were carefully reviewed and selected from numerous submissions. They are organized in topical sections on mathematical modeling and methods, numerical modeling and methods, computational support of the experiments, computing tools, and optimization and simulation.

Scientific Computing with Case Studies

Scientific Computing with Case Studies
Author: Dianne P. O'Leary
Publisher: SIAM
Total Pages: 376
Release: 2009-03-19
Genre: Mathematics
ISBN: 0898716667

This book is a practical guide to the numerical solution of linear and nonlinear equations, differential equations, optimization problems, and eigenvalue problems. It treats standard problems and introduces important variants such as sparse systems, differential-algebraic equations, constrained optimization, Monte Carlo simulations, and parametric studies. Stability and error analysis are emphasized, and the Matlab algorithms are grounded in sound principles of software design and understanding of machine arithmetic and memory management. Nineteen case studies provide experience in mathematical modeling and algorithm design, motivated by problems in physics, engineering, epidemiology, chemistry, and biology. The topics included go well beyond the standard first-course syllabus, introducing important problems such as differential-algebraic equations and conic optimization problems, and important solution techniques such as continuation methods. The case studies cover a wide variety of fascinating applications, from modeling the spread of an epidemic to determining truss configurations.

Numerical Computing with MATLAB

Numerical Computing with MATLAB
Author: Cleve B. Moler
Publisher: SIAM
Total Pages: 340
Release: 2010-08-12
Genre: Computers
ISBN: 0898716608

A revised textbook for introductory courses in numerical methods, MATLAB and technical computing, which emphasises the use of mathematical software.

Computational Mathematical Modeling

Computational Mathematical Modeling
Author: Daniela Calvetti
Publisher: SIAM
Total Pages: 229
Release: 2013-03-21
Genre: Mathematics
ISBN: 1611972477

Interesting real-world mathematical modelling problems are complex and can usually be studied at different scales. The scale at which the investigation is carried out is one of the factors that determines the type of mathematics most appropriate to describe the problem. The book concentrates on two modelling paradigms: the macroscopic, in which phenomena are described in terms of time evolution via ordinary differential equations; and the microscopic, which requires knowledge of random events and probability. The exposition is based on this unorthodox combination of deterministic and probabilistic methodologies, and emphasizes the development of computational skills to construct predictive models. To elucidate the concepts, a wealth of examples, self-study problems, and portions of MATLAB code used by the authors are included. This book, which has been extensively tested by the authors for classroom use, is intended for students in mathematics and the physical sciences at the advanced undergraduate level and above.

Fundamentals of Scientific Computing

Fundamentals of Scientific Computing
Author: Bertil Gustafsson
Publisher: Springer Science & Business Media
Total Pages: 317
Release: 2011-06-11
Genre: Mathematics
ISBN: 3642194958

The book of nature is written in the language of mathematics -- Galileo Galilei How is it possible to predict weather patterns for tomorrow, with access solely to today’s weather data? And how is it possible to predict the aerodynamic behavior of an aircraft that has yet to be built? The answer is computer simulations based on mathematical models – sets of equations – that describe the underlying physical properties. However, these equations are usually much too complicated to solve, either by the smartest mathematician or the largest supercomputer. This problem is overcome by constructing an approximation: a numerical model with a simpler structure can be translated into a program that tells the computer how to carry out the simulation. This book conveys the fundamentals of mathematical models, numerical methods and algorithms. Opening with a tutorial on mathematical models and analysis, it proceeds to introduce the most important classes of numerical methods, with finite element, finite difference and spectral methods as central tools. The concluding section describes applications in physics and engineering, including wave propagation, heat conduction and fluid dynamics. Also covered are the principles of computers and programming, including MATLAB®.