Mathematical Methods In Tomography
Download Mathematical Methods In Tomography full books in PDF, epub, and Kindle. Read online free Mathematical Methods In Tomography ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Frank Natterer |
Publisher | : SIAM |
Total Pages | : 226 |
Release | : 2001-01-01 |
Genre | : Computers |
ISBN | : 0898716225 |
This book provides readers with a superior understanding of the mathematical principles behind imaging.
Author | : Gabor T. Herman |
Publisher | : Springer |
Total Pages | : 279 |
Release | : 2006-11-14 |
Genre | : Medical |
ISBN | : 3540466150 |
The conference was devoted to the discussion of present and future techniques in medical imaging, including 3D x-ray CT, ultrasound and diffraction tomography, and biomagnetic ima- ging. The mathematical models, their theoretical aspects and the development of algorithms were treated. The proceedings contains surveys on reconstruction in inverse obstacle scat- tering, inversion in 3D, and constrained least squares pro- blems.Research papers include besides the mentioned imaging techniques presentations on image reconstruction in Hilbert spaces, singular value decompositions, 3D cone beam recon- struction, diffuse tomography, regularization of ill-posed problems, evaluation reconstruction algorithms and applica- tions in non-medical fields. Contents: Theoretical Aspects: J.Boman: Helgason' s support theorem for Radon transforms-a newproof and a generalization -P.Maass: Singular value de- compositions for Radon transforms- W.R.Madych: Image recon- struction in Hilbert space -R.G.Mukhometov: A problem of in- tegral geometry for a family of rays with multiple reflec- tions -V.P.Palamodov: Inversion formulas for the three-di- mensional ray transform - Medical Imaging Techniques: V.Friedrich: Backscattered Photons - are they useful for a surface - near tomography - P.Grangeat: Mathematical frame- work of cone beam 3D reconstruction via the first derivative of the Radon transform -P.Grassin,B.Duchene,W.Tabbara: Dif- fraction tomography: some applications and extension to 3D ultrasound imaging -F.A.Gr}nbaum: Diffuse tomography: a re- fined model -R.Kress,A.Zinn: Three dimensional reconstruc- tions in inverse obstacle scattering -A.K.Louis: Mathemati- cal questions of a biomagnetic imaging problem - Inverse Problems and Optimization: Y.Censor: On variable block algebraic reconstruction techniques -P.P.Eggermont: On Volterra-Lotka differential equations and multiplicative algorithms for monotone complementary problems
Author | : Otmar Scherzer |
Publisher | : Springer Science & Business Media |
Total Pages | : 1626 |
Release | : 2010-11-23 |
Genre | : Mathematics |
ISBN | : 0387929193 |
The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.
Author | : Frank Natterer |
Publisher | : SIAM |
Total Pages | : 240 |
Release | : 2001-06-01 |
Genre | : Mathematics |
ISBN | : 0898714931 |
This book provides a unified view of tomographic techniques and an in-depth treatment of reconstruction algorithms.
Author | : Timothy G. Feeman |
Publisher | : Springer Science & Business Media |
Total Pages | : 150 |
Release | : 2010 |
Genre | : Computers |
ISBN | : 0387927115 |
Medical imaging is a major part of twenty-first century health care. This introduction explores the mathematical aspects of imaging in medicine to explain approximation methods in addition to computer implementation of inversion algorithms.
Author | : Peter Kuchment |
Publisher | : SIAM |
Total Pages | : 238 |
Release | : 2014-03-20 |
Genre | : Computers |
ISBN | : 1611973287 |
This book surveys the main mathematical ideas and techniques behind some well-established imaging modalities such as X-ray CT and emission tomography, as well as a variety of newly developing coupled-physics or hybrid techniques, including thermoacoustic tomography. The Radon Transform and Medical Imaging emphasizes mathematical techniques and ideas arising across the spectrum of medical imaging modalities and explains important concepts concerning inversion, stability, incomplete data effects, the role of interior information, and other issues critical to all medical imaging methods. For nonexperts, the author provides appendices that cover background information on notation, Fourier analysis, geometric rays, and linear operators. The vast bibliography, with over 825 entries, directs readers to a wide array of additional information sources on medical imaging for further study.
Author | : Charles L. Epstein |
Publisher | : SIAM |
Total Pages | : 794 |
Release | : 2008-01-01 |
Genre | : Mathematics |
ISBN | : 9780898717792 |
At the heart of every medical imaging technology is a sophisticated mathematical model of the measurement process and an algorithm to reconstruct an image from the measured data. This book provides a firm foundation in the mathematical tools used to model the measurements and derive the reconstruction algorithms used in most of these modalities. The text uses X-ray computed tomography (X-ray CT) as a 'pedagogical machine' to illustrate important ideas and its extensive discussion of background material makes the more advanced mathematical topics accessible to people with a less formal mathematical education. This new edition contains a chapter on magnetic resonance imaging (MRI), a revised section on the relationship between the continuum and discrete Fourier transforms, an improved description of the gridding method, and new sections on both Grangreat's formula and noise analysis in MR-imaging. Mathematical concepts are illuminated with over 200 illustrations and numerous exercises.
Author | : Per Christian Hansen |
Publisher | : SIAM |
Total Pages | : 355 |
Release | : 2021-09-25 |
Genre | : Mathematics |
ISBN | : 1611976677 |
This book describes fundamental computational methods for image reconstruction in computed tomography (CT) with a focus on a pedagogical presentation of these methods and their underlying concepts. Insights into the advantages, limitations, and theoretical and computational aspects of the methods are included, giving a balanced presentation that allows readers to understand and implement CT reconstruction algorithms. Unique in its emphasis on the interplay between modeling, computing, and algorithm development, Computed Tomography: Algorithms, Insight, and Just Enough Theory develops the mathematical and computational aspects of three main classes of reconstruction methods: classical filtered back-projection, algebraic iterative methods, and variational methods based on nonlinear numerical optimization algorithms. It spotlights the link between CT and numerical methods, which is rarely discussed in current literature, and describes the effects of incomplete data using both microlocal analysis and singular value decomposition (SVD). This book sets the stage for further exploration of CT algorithms. Readers will be able to grasp the underlying mathematical models to motivate and derive the basic principles of CT reconstruction and will gain basic understanding of fundamental computational challenges of CT, such as the influence of noisy and incomplete data, as well as the reconstruction capabilities and the convergence of the iterative algorithms. Exercises using MATLAB are included, allowing readers to experiment with the algorithms and making the book suitable for teaching and self-study. Computed Tomography: Algorithms, Insight, and Just Enough Theory is primarily aimed at students, researchers, and practitioners interested in the computational aspects of X-ray CT and is also relevant for anyone working with other forms of tomography, such as neutron and electron tomography, that share the same mathematical formulation. With its basis in lecture notes developed for a PhD course, it is appropriate as a textbook for courses on computational methods for X-ray CT and computational methods for inverse problems.
Author | : Gabor T. Herman |
Publisher | : Springer Science & Business Media |
Total Pages | : 512 |
Release | : 1999-11 |
Genre | : Computers |
ISBN | : 9780817641016 |
Goals of the Book Overthelast thirty yearsthere has been arevolutionindiagnostic radiology as a result oftheemergenceofcomputerized tomography (CT), which is the process of obtaining the density distribution within the human body from multiple x-ray projections. Since an enormous variety of possible density values may occur in the body, a large number of projections are necessary to ensure the accurate reconstruction oftheir distribution. There are other situations in which we desire to reconstruct an object from its projections, but in which we know that the object to be recon structed has only a small number of possible values. For example, a large fraction of objects scanned in industrial CT (for the purpose of nonde structive testing or reverse engineering) are made of a single material and so the ideal reconstruction should contain only two values: zero for air and the value associated with the material composing the object. Similar as sumptions may even be made for some specific medical applications; for example, in angiography ofthe heart chambers the value is either zero (in dicating the absence of dye) or the value associated with the dye in the chamber. Another example arises in the electron microscopy of biological macromolecules, where we may assume that the object to be reconstructed is composed of ice, protein, and RNA. One can also apply electron mi croscopy to determine the presenceor absence ofatoms in crystallinestruc tures, which is again a two-valued situation.
Author | : Anthony J. Devaney |
Publisher | : Cambridge University Press |
Total Pages | : 537 |
Release | : 2012-06-21 |
Genre | : Science |
ISBN | : 1139510142 |
Inverse problems are of interest and importance across many branches of physics, mathematics, engineering and medical imaging. In this text, the foundations of imaging and wavefield inversion are presented in a clear and systematic way. The necessary theory is gradually developed throughout the book, progressing from simple wave equation based models to vector wave models. By combining theory with numerous MATLAB based examples, the author promotes a complete understanding of the material and establishes a basis for real world applications. Key topics of discussion include the derivation of solutions to the inhomogeneous and homogeneous Helmholtz equations using Green function techniques; the propagation and scattering of waves in homogeneous and inhomogeneous backgrounds; and the concept of field time reversal. Bridging the gap between mathematics and physics, this multidisciplinary book will appeal to graduate students and researchers alike. Additional resources including MATLAB codes and solutions are available online at www.cambridge.org/9780521119740.