Mathematical Logic And Theoretical Computer Science
Download Mathematical Logic And Theoretical Computer Science full books in PDF, epub, and Kindle. Read online free Mathematical Logic And Theoretical Computer Science ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : David Kueker |
Publisher | : CRC Press |
Total Pages | : |
Release | : 2020-12-22 |
Genre | : Mathematics |
ISBN | : 1000111512 |
Mathematical Logic and Theoretical Computer Science covers various topics ranging from recursion theory to Zariski topoi. Leading international authorities discuss selected topics in a number of areas, including denotational semanitcs, reccuriosn theoretic aspects fo computer science, model theory and algebra, Automath and automated reasoning, stability theory, topoi and mathematics, and topoi and logic. The most up-to-date review available in its field, Mathematical Logic and Theoretical Computer Science will be of interest to mathematical logicians, computer scientists, algebraists, algebraic geometers, differential geometers, differential topologists, and graduate students in mathematics and computer science.
Author | : Mordechai Ben-Ari |
Publisher | : Springer Science & Business Media |
Total Pages | : 311 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1447103351 |
This is a mathematics textbook with theorems and proofs. The choice of topics has been guided by the needs of computer science students. The method of semantic tableaux provides an elegant way to teach logic that is both theoretically sound and yet sufficiently elementary for undergraduates. In order to provide a balanced treatment of logic, tableaux are related to deductive proof systems. The book presents various logical systems and contains exercises. Still further, Prolog source code is available on an accompanying Web site. The author is an Associate Professor at the Department of Science Teaching, Weizmann Institute of Science.
Author | : Erich Grädel |
Publisher | : Springer Science & Business Media |
Total Pages | : 447 |
Release | : 2007-06-04 |
Genre | : Computers |
ISBN | : 3540688048 |
Finite model theory,as understoodhere, is an areaof mathematicallogic that has developed in close connection with applications to computer science, in particular the theory of computational complexity and database theory. One of the fundamental insights of mathematical logic is that our understanding of mathematical phenomena is enriched by elevating the languages we use to describe mathematical structures to objects of explicit study. If mathematics is the science of patterns, then the media through which we discern patterns, as well as the structures in which we discern them, command our attention. It isthis aspect oflogicwhichis mostprominentin model theory,“thebranchof mathematical logic which deals with the relation between a formal language and its interpretations”. No wonder, then, that mathematical logic, and ?nite model theory in particular, should ?nd manifold applications in computer science: from specifying programs to querying databases, computer science is rife with phenomena whose understanding requires close attention to the interaction between language and structure. This volume gives a broadoverviewof some central themes of ?nite model theory: expressive power, descriptive complexity, and zero–one laws, together with selected applications to database theory and arti?cial intelligence, es- cially constraint databases and constraint satisfaction problems. The ?nal chapter provides a concise modern introduction to modal logic,which emp- sizes the continuity in spirit and technique with ?nite model theory.
Author | : M.A. Arbib |
Publisher | : Springer Science & Business Media |
Total Pages | : 228 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1461394554 |
Computer science seeks to provide a scientific basis for the study of inform a tion processing, the solution of problems by algorithms, and the design and programming of computers. The last forty years have seen increasing sophistication in the science, in the microelectronics which has made machines of staggering complexity economically feasible, in the advances in programming methodology which allow immense programs to be designed with increasing speed and reduced error, and in the development of mathematical techniques to allow the rigorous specification of program, process, and machine. The present volume is one of a series, The AKM Series in Theoretical Computer Science, designed to make key mathe matical developments in computer science readily accessible to under graduate and beginning graduate students. Specifically, this volume takes readers with little or no mathematical background beyond high school algebra, and gives them a taste of a number of topics in theoretical computer science while laying the mathematical foundation for the later, more detailed, study of such topics as formal language theory, computability theory, programming language semantics, and the study of program verification and correctness. Chapter 1 introduces the basic concepts of set theory, with special emphasis on functions and relations, using a simple algorithm to provide motivation. Chapter 2 presents the notion of inductive proof and gives the reader a good grasp on one of the most important notions of computer science: the recursive definition of functions and data structures.
Author | : A. S. Troelstra |
Publisher | : Cambridge University Press |
Total Pages | : 436 |
Release | : 2000-07-27 |
Genre | : Computers |
ISBN | : 9780521779111 |
This introduction to the basic ideas of structural proof theory contains a thorough discussion and comparison of various types of formalization of first-order logic. Examples are given of several areas of application, namely: the metamathematics of pure first-order logic (intuitionistic as well as classical); the theory of logic programming; category theory; modal logic; linear logic; first-order arithmetic and second-order logic. In each case the aim is to illustrate the methods in relatively simple situations and then apply them elsewhere in much more complex settings. There are numerous exercises throughout the text. In general, the only prerequisite is a standard course in first-order logic, making the book ideal for graduate students and beginning researchers in mathematical logic, theoretical computer science and artificial intelligence. For the new edition, many sections have been rewritten to improve clarity, new sections have been added on cut elimination, and solutions to selected exercises have been included.
Author | : Donald W. Loveland |
Publisher | : Princeton University Press |
Total Pages | : 339 |
Release | : 2014-01-26 |
Genre | : Mathematics |
ISBN | : 140084875X |
The first interdisciplinary textbook to introduce students to three critical areas in applied logic Demonstrating the different roles that logic plays in the disciplines of computer science, mathematics, and philosophy, this concise undergraduate textbook covers select topics from three different areas of logic: proof theory, computability theory, and nonclassical logic. The book balances accessibility, breadth, and rigor, and is designed so that its materials will fit into a single semester. Its distinctive presentation of traditional logic material will enhance readers' capabilities and mathematical maturity. The proof theory portion presents classical propositional logic and first-order logic using a computer-oriented (resolution) formal system. Linear resolution and its connection to the programming language Prolog are also treated. The computability component offers a machine model and mathematical model for computation, proves the equivalence of the two approaches, and includes famous decision problems unsolvable by an algorithm. The section on nonclassical logic discusses the shortcomings of classical logic in its treatment of implication and an alternate approach that improves upon it: Anderson and Belnap's relevance logic. Applications are included in each section. The material on a four-valued semantics for relevance logic is presented in textbook form for the first time. Aimed at upper-level undergraduates of moderate analytical background, Three Views of Logic will be useful in a variety of classroom settings. Gives an exceptionally broad view of logic Treats traditional logic in a modern format Presents relevance logic with applications Provides an ideal text for a variety of one-semester upper-level undergraduate courses
Author | : Uwe Schöning |
Publisher | : Springer Science & Business Media |
Total Pages | : 173 |
Release | : 2009-11-03 |
Genre | : Mathematics |
ISBN | : 0817647635 |
This book introduces the notions and methods of formal logic from a computer science standpoint, covering propositional logic, predicate logic, and foundations of logic programming. The classic text is replete with illustrative examples and exercises. It presents applications and themes of computer science research such as resolution, automated deduction, and logic programming in a rigorous but readable way. The style and scope of the work, rounded out by the inclusion of exercises, make this an excellent textbook for an advanced undergraduate course in logic for computer scientists.
Author | : Lawrence C. Paulson |
Publisher | : |
Total Pages | : 302 |
Release | : 1987 |
Genre | : Computers |
ISBN | : 9780521346320 |
This book is concerned with techniques for formal theorem-proving, with particular reference to Cambridge LCF (Logic for Computable Functions). Cambridge LCF is a computer program for reasoning about computation. It combines the methods of mathematical logic with domain theory, the basis of the denotational approach to specifying the meaning of program statements. Cambridge LCF is based on an earlier theorem-proving system, Edinburgh LCF, which introduced a design that gives the user flexibility to use and extend the system. A goal of this book is to explain the design, which has been adopted in several other systems. The book consists of two parts. Part I outlines the mathematical preliminaries, elementary logic and domain theory, and explains them at an intuitive level, giving reference to more advanced reading; Part II provides sufficient detail to serve as a reference manual for Cambridge LCF. It will also be a useful guide for implementors of other programs based on the LCF approach.
Author | : Howard Straubing |
Publisher | : Springer Science & Business Media |
Total Pages | : 235 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1461202892 |
The study of the connections between mathematical automata and for mal logic is as old as theoretical computer science itself. In the founding paper of the subject, published in 1936, Turing showed how to describe the behavior of a universal computing machine with a formula of first order predicate logic, and thereby concluded that there is no algorithm for deciding the validity of sentences in this logic. Research on the log ical aspects of the theory of finite-state automata, which is the subject of this book, began in the early 1960's with the work of J. Richard Biichi on monadic second-order logic. Biichi's investigations were extended in several directions. One of these, explored by McNaughton and Papert in their 1971 monograph Counter-free Automata, was the characterization of automata that admit first-order behavioral descriptions, in terms of the semigroup theoretic approach to automata that had recently been developed in the work of Krohn and Rhodes and of Schiitzenberger. In the more than twenty years that have passed since the appearance of McNaughton and Papert's book, the underlying semigroup theory has grown enor mously, permitting a considerable extension of their results. During the same period, however, fundamental investigations in the theory of finite automata by and large fell out of fashion in the theoretical com puter science community, which moved to other concerns.
Author | : Fred Kröger |
Publisher | : Springer Science & Business Media |
Total Pages | : 440 |
Release | : 2008-03-27 |
Genre | : Computers |
ISBN | : 3540674012 |
Temporal logic has developed over the last 30 years into a powerful formal setting for the specification and verification of state-based systems. Based on university lectures given by the authors, this book is a comprehensive, concise, uniform, up-to-date presentation of the theory and applications of linear and branching time temporal logic; TLA (Temporal Logic of Actions); automata theoretical connections; model checking; and related theories. All theoretical details and numerous application examples are elaborated carefully and with full formal rigor, and the book will serve as a basic source and reference for lecturers, graduate students and researchers.