Mathematical Analysis Of Machine Learning Algorithms
Download Mathematical Analysis Of Machine Learning Algorithms full books in PDF, epub, and Kindle. Read online free Mathematical Analysis Of Machine Learning Algorithms ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Dan A Simovici |
Publisher | : World Scientific |
Total Pages | : 985 |
Release | : 2018-05-22 |
Genre | : Computers |
ISBN | : 9813229705 |
This compendium provides a self-contained introduction to mathematical analysis in the field of machine learning and data mining. The mathematical analysis component of the typical mathematical curriculum for computer science students omits these very important ideas and techniques which are indispensable for approaching specialized area of machine learning centered around optimization such as support vector machines, neural networks, various types of regression, feature selection, and clustering. The book is of special interest to researchers and graduate students who will benefit from these application areas discussed in the book. Related Link(s)
Author | : Marc Peter Deisenroth |
Publisher | : Cambridge University Press |
Total Pages | : 392 |
Release | : 2020-04-23 |
Genre | : Computers |
ISBN | : 1108569323 |
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Author | : Scott V. Burger |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 227 |
Release | : 2018-03-07 |
Genre | : Computers |
ISBN | : 149197639X |
Machine learning is an intimidating subject until you know the fundamentals. If you understand basic coding concepts, this introductory guide will help you gain a solid foundation in machine learning principles. Using the R programming language, you’ll first start to learn with regression modelling and then move into more advanced topics such as neural networks and tree-based methods. Finally, you’ll delve into the frontier of machine learning, using the caret package in R. Once you develop a familiarity with topics such as the difference between regression and classification models, you’ll be able to solve an array of machine learning problems. Author Scott V. Burger provides several examples to help you build a working knowledge of machine learning. Explore machine learning models, algorithms, and data training Understand machine learning algorithms for supervised and unsupervised cases Examine statistical concepts for designing data for use in models Dive into linear regression models used in business and science Use single-layer and multilayer neural networks for calculating outcomes Look at how tree-based models work, including popular decision trees Get a comprehensive view of the machine learning ecosystem in R Explore the powerhouse of tools available in R’s caret package
Author | : Richard Golden |
Publisher | : CRC Press |
Total Pages | : 525 |
Release | : 2020-06-24 |
Genre | : Computers |
ISBN | : 1351051490 |
The recent rapid growth in the variety and complexity of new machine learning architectures requires the development of improved methods for designing, analyzing, evaluating, and communicating machine learning technologies. Statistical Machine Learning: A Unified Framework provides students, engineers, and scientists with tools from mathematical statistics and nonlinear optimization theory to become experts in the field of machine learning. In particular, the material in this text directly supports the mathematical analysis and design of old, new, and not-yet-invented nonlinear high-dimensional machine learning algorithms. Features: Unified empirical risk minimization framework supports rigorous mathematical analyses of widely used supervised, unsupervised, and reinforcement machine learning algorithms Matrix calculus methods for supporting machine learning analysis and design applications Explicit conditions for ensuring convergence of adaptive, batch, minibatch, MCEM, and MCMC learning algorithms that minimize both unimodal and multimodal objective functions Explicit conditions for characterizing asymptotic properties of M-estimators and model selection criteria such as AIC and BIC in the presence of possible model misspecification This advanced text is suitable for graduate students or highly motivated undergraduate students in statistics, computer science, electrical engineering, and applied mathematics. The text is self-contained and only assumes knowledge of lower-division linear algebra and upper-division probability theory. Students, professional engineers, and multidisciplinary scientists possessing these minimal prerequisites will find this text challenging yet accessible. About the Author: Richard M. Golden (Ph.D., M.S.E.E., B.S.E.E.) is Professor of Cognitive Science and Participating Faculty Member in Electrical Engineering at the University of Texas at Dallas. Dr. Golden has published articles and given talks at scientific conferences on a wide range of topics in the fields of both statistics and machine learning over the past three decades. His long-term research interests include identifying conditions for the convergence of deterministic and stochastic machine learning algorithms and investigating estimation and inference in the presence of possibly misspecified probability models.
Author | : Dirk P. Kroese |
Publisher | : CRC Press |
Total Pages | : 538 |
Release | : 2019-11-20 |
Genre | : Business & Economics |
ISBN | : 1000730778 |
Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code
Author | : Tong Zhang |
Publisher | : Cambridge University Press |
Total Pages | : 469 |
Release | : 2023-07-31 |
Genre | : Computers |
ISBN | : 1009098381 |
Introduction to the mathematical foundation for understanding and analyzing machine learning algorithms for AI students and researchers.
Author | : Jeremy Watt |
Publisher | : Cambridge University Press |
Total Pages | : 597 |
Release | : 2020-01-09 |
Genre | : Computers |
ISBN | : 1108480721 |
An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.
Author | : Giuseppe Bonaccorso |
Publisher | : Packt Publishing Ltd |
Total Pages | : 352 |
Release | : 2017-07-24 |
Genre | : Computers |
ISBN | : 1785884514 |
Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide About This Book Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide. Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation. Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide. Who This Book Is For This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here. What You Will Learn Acquaint yourself with important elements of Machine Learning Understand the feature selection and feature engineering process Assess performance and error trade-offs for Linear Regression Build a data model and understand how it works by using different types of algorithm Learn to tune the parameters of Support Vector machines Implement clusters to a dataset Explore the concept of Natural Processing Language and Recommendation Systems Create a ML architecture from scratch. In Detail As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge. In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously. On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem. Style and approach An easy-to-follow, step-by-step guide that will help you get to grips with real -world applications of Algorithms for Machine Learning.
Author | : Nathan Carter |
Publisher | : American Mathematical Soc. |
Total Pages | : 295 |
Release | : 2021-06-08 |
Genre | : Education |
ISBN | : 1470464330 |
Recipient of the Mathematical Association of America's Beckenbach Book Prize in 2012! Group theory is the branch of mathematics that studies symmetry, found in crystals, art, architecture, music and many other contexts, but its beauty is lost on students when it is taught in a technical style that is difficult to understand. Visual Group Theory assumes only a high school mathematics background and covers a typical undergraduate course in group theory from a thoroughly visual perspective. The more than 300 illustrations in Visual Group Theory bring groups, subgroups, homomorphisms, products, and quotients into clear view. Every topic and theorem is accompanied with a visual demonstration of its meaning and import, from the basics of groups and subgroups through advanced structural concepts such as semidirect products and Sylow theory.
Author | : Zhengyan Lin |
Publisher | : Springer Science & Business Media |
Total Pages | : 192 |
Release | : 2011-05-30 |
Genre | : Mathematics |
ISBN | : 3642052614 |
Inequality has become an essential tool in many areas of mathematical research, for example in probability and statistics where it is frequently used in the proofs. "Probability Inequalities" covers inequalities related with events, distribution functions, characteristic functions, moments and random variables (elements) and their sum. The book shall serve as a useful tool and reference for scientists in the areas of probability and statistics, and applied mathematics. Prof. Zhengyan Lin is a fellow of the Institute of Mathematical Statistics and currently a professor at Zhejiang University, Hangzhou, China. He is the prize winner of National Natural Science Award of China in 1997. Prof. Zhidong Bai is a fellow of TWAS and the Institute of Mathematical Statistics; he is a professor at the National University of Singapore and Northeast Normal University, Changchun, China.