Mastering Hadoop

Mastering Hadoop
Author: Sandeep Karanth
Publisher: Packt Publishing Ltd
Total Pages: 549
Release: 2014-12-29
Genre: Computers
ISBN: 1783983655

Do you want to broaden your Hadoop skill set and take your knowledge to the next level? Do you wish to enhance your knowledge of Hadoop to solve challenging data processing problems? Are your Hadoop jobs, Pig scripts, or Hive queries not working as fast as you intend? Are you looking to understand the benefits of upgrading Hadoop? If the answer is yes to any of these, this book is for you. It assumes novice-level familiarity with Hadoop.

Mastering Hadoop 3

Mastering Hadoop 3
Author: Chanchal Singh
Publisher: Packt Publishing Ltd
Total Pages: 531
Release: 2019-02-28
Genre: Computers
ISBN: 1788628322

A comprehensive guide to mastering the most advanced Hadoop 3 concepts Key FeaturesGet to grips with the newly introduced features and capabilities of Hadoop 3Crunch and process data using MapReduce, YARN, and a host of tools within the Hadoop ecosystemSharpen your Hadoop skills with real-world case studies and codeBook Description Apache Hadoop is one of the most popular big data solutions for distributed storage and for processing large chunks of data. With Hadoop 3, Apache promises to provide a high-performance, more fault-tolerant, and highly efficient big data processing platform, with a focus on improved scalability and increased efficiency. With this guide, you’ll understand advanced concepts of the Hadoop ecosystem tool. You’ll learn how Hadoop works internally, study advanced concepts of different ecosystem tools, discover solutions to real-world use cases, and understand how to secure your cluster. It will then walk you through HDFS, YARN, MapReduce, and Hadoop 3 concepts. You’ll be able to address common challenges like using Kafka efficiently, designing low latency, reliable message delivery Kafka systems, and handling high data volumes. As you advance, you’ll discover how to address major challenges when building an enterprise-grade messaging system, and how to use different stream processing systems along with Kafka to fulfil your enterprise goals. By the end of this book, you’ll have a complete understanding of how components in the Hadoop ecosystem are effectively integrated to implement a fast and reliable data pipeline, and you’ll be equipped to tackle a range of real-world problems in data pipelines. What you will learnGain an in-depth understanding of distributed computing using Hadoop 3Develop enterprise-grade applications using Apache Spark, Flink, and moreBuild scalable and high-performance Hadoop data pipelines with security, monitoring, and data governanceExplore batch data processing patterns and how to model data in HadoopMaster best practices for enterprises using, or planning to use, Hadoop 3 as a data platformUnderstand security aspects of Hadoop, including authorization and authenticationWho this book is for If you want to become a big data professional by mastering the advanced concepts of Hadoop, this book is for you. You’ll also find this book useful if you’re a Hadoop professional looking to strengthen your knowledge of the Hadoop ecosystem. Fundamental knowledge of the Java programming language and basics of Hadoop is necessary to get started with this book.

Mastering Apache Hadoop

Mastering Apache Hadoop
Author: Cybellium Ltd
Publisher: Cybellium Ltd
Total Pages: 194
Release: 2023-09-26
Genre: Computers
ISBN:

Unleash the Power of Big Data Processing with Apache Hadoop Ecosystem Are you ready to embark on a journey into the world of big data processing and analysis using Apache Hadoop? "Mastering Apache Hadoop" is your comprehensive guide to understanding and harnessing the capabilities of Hadoop for processing and managing massive datasets. Whether you're a data engineer seeking to optimize processing pipelines or a business analyst aiming to extract insights from large data, this book equips you with the knowledge and tools to master the art of Hadoop-based data processing. Key Features: 1. Deep Dive into Hadoop Ecosystem: Immerse yourself in the core components and concepts of the Apache Hadoop ecosystem. Understand the architecture, components, and functionalities that make Hadoop a powerful platform for big data. 2. Installation and Configuration: Master the art of installing and configuring Hadoop on various platforms. Learn about cluster setup, resource management, and configuration settings for optimal performance. 3. Hadoop Distributed File System (HDFS): Uncover the power of HDFS for distributed storage and data management. Explore concepts like replication, fault tolerance, and data placement to ensure data durability. 4. MapReduce and Data Processing: Delve into MapReduce, the core data processing paradigm in Hadoop. Learn how to write MapReduce jobs, optimize performance, and leverage parallel processing for efficient data analysis. 5. Data Ingestion and ETL: Discover techniques for ingesting and transforming data in Hadoop. Explore tools like Apache Sqoop and Apache Flume for extracting data from various sources and loading it into Hadoop. 6. Data Querying and Analysis: Master querying and analyzing data using Hadoop. Learn about Hive, Pig, and Spark SQL for querying structured and semi-structured data, and uncover insights that drive informed decisions. 7. Data Storage Formats: Explore data storage formats optimized for Hadoop. Learn about Avro, Parquet, and ORC, and understand how to choose the right format for efficient storage and retrieval. 8. Batch and Stream Processing: Uncover strategies for batch and real-time data processing in Hadoop. Learn how to use Apache Spark and Apache Flink to process data in both batch and streaming modes. 9. Data Visualization and Reporting: Discover techniques for visualizing and reporting on Hadoop data. Explore integration with tools like Apache Zeppelin and Tableau to create compelling visualizations. 10. Real-World Applications: Gain insights into real-world use cases of Apache Hadoop across industries. From financial analysis to social media sentiment analysis, explore how organizations are leveraging Hadoop's capabilities for data-driven innovation. Who This Book Is For: "Mastering Apache Hadoop" is an essential resource for data engineers, analysts, and IT professionals who want to excel in big data processing using Hadoop. Whether you're new to Hadoop or seeking advanced techniques, this book will guide you through the intricacies and empower you to harness the full potential of big data technology.

Mastering Apache Spark

Mastering Apache Spark
Author: Cybellium Ltd
Publisher: Cybellium Ltd
Total Pages: 248
Release: 2023-09-26
Genre: Computers
ISBN:

Unleash the Potential of Distributed Data Processing with Apache Spark Are you prepared to venture into the realm of distributed data processing and analytics with Apache Spark? "Mastering Apache Spark" is your comprehensive guide to unlocking the full potential of this powerful framework for big data processing. Whether you're a data engineer seeking to optimize data pipelines or a business analyst aiming to extract insights from massive datasets, this book equips you with the knowledge and tools to master the art of Spark-based data processing. Key Features: 1. Deep Dive into Apache Spark: Immerse yourself in the core principles of Apache Spark, comprehending its architecture, components, and versatile functionalities. Construct a robust foundation that empowers you to manage big data with precision. 2. Installation and Configuration: Master the art of installing and configuring Apache Spark across diverse platforms. Learn about cluster setup, resource allocation, and configuration tuning for optimal performance. 3. Spark Core and RDDs: Uncover the core of Spark—Resilient Distributed Datasets (RDDs). Explore the functional programming paradigm and leverage RDDs for efficient and fault-tolerant data processing. 4. Structured Data Processing with Spark SQL: Delve into Spark SQL for querying structured data with ease. Learn how to execute SQL queries, perform data manipulations, and tap into the power of DataFrames. 5. Streamlining Data Processing with Spark Streaming: Discover the power of real-time data processing with Spark Streaming. Learn how to handle continuous data streams and perform near-real-time analytics. 6. Machine Learning with MLlib: Master Spark's machine learning library, MLlib. Dive into algorithms for classification, regression, clustering, and recommendation, enabling you to develop sophisticated data-driven models. 7. Graph Processing with GraphX: Embark on a journey through graph processing with Spark's GraphX. Learn how to analyze and visualize graph data to glean insights from complex relationships. 8. Data Processing with Spark Structured Streaming: Explore the world of structured streaming in Spark. Learn how to process and analyze data streams with the declarative power of DataFrames. 9. Spark Ecosystem and Integrations: Navigate Spark's rich ecosystem of libraries and integrations. From data ingestion with Apache Kafka to interactive analytics with Apache Zeppelin, explore tools that enhance Spark's capabilities. 10. Real-World Applications: Gain insights into real-world use cases of Apache Spark across industries. From fraud detection to sentiment analysis, discover how organizations leverage Spark for data-driven innovation. Who This Book Is For: "Mastering Apache Spark" is a must-have resource for data engineers, analysts, and IT professionals poised to excel in the world of distributed data processing using Spark. Whether you're new to Spark or seeking advanced techniques, this book will guide you through the intricacies and empower you to harness the full potential of this transformative framework.

Mastering Apache Spark 2.x

Mastering Apache Spark 2.x
Author: Romeo Kienzler
Publisher: Packt Publishing Ltd
Total Pages: 345
Release: 2017-07-26
Genre: Computers
ISBN: 178528522X

Advanced analytics on your Big Data with latest Apache Spark 2.x About This Book An advanced guide with a combination of instructions and practical examples to extend the most up-to date Spark functionalities. Extend your data processing capabilities to process huge chunk of data in minimum time using advanced concepts in Spark. Master the art of real-time processing with the help of Apache Spark 2.x Who This Book Is For If you are a developer with some experience with Spark and want to strengthen your knowledge of how to get around in the world of Spark, then this book is ideal for you. Basic knowledge of Linux, Hadoop and Spark is assumed. Reasonable knowledge of Scala is expected. What You Will Learn Examine Advanced Machine Learning and DeepLearning with MLlib, SparkML, SystemML, H2O and DeepLearning4J Study highly optimised unified batch and real-time data processing using SparkSQL and Structured Streaming Evaluate large-scale Graph Processing and Analysis using GraphX and GraphFrames Apply Apache Spark in Elastic deployments using Jupyter and Zeppelin Notebooks, Docker, Kubernetes and the IBM Cloud Understand internal details of cost based optimizers used in Catalyst, SystemML and GraphFrames Learn how specific parameter settings affect overall performance of an Apache Spark cluster Leverage Scala, R and python for your data science projects In Detail Apache Spark is an in-memory cluster-based parallel processing system that provides a wide range of functionalities such as graph processing, machine learning, stream processing, and SQL. This book aims to take your knowledge of Spark to the next level by teaching you how to expand Spark's functionality and implement your data flows and machine/deep learning programs on top of the platform. The book commences with an overview of the Spark ecosystem. It will introduce you to Project Tungsten and Catalyst, two of the major advancements of Apache Spark 2.x. You will understand how memory management and binary processing, cache-aware computation, and code generation are used to speed things up dramatically. The book extends to show how to incorporate H20, SystemML, and Deeplearning4j for machine learning, and Jupyter Notebooks and Kubernetes/Docker for cloud-based Spark. During the course of the book, you will learn about the latest enhancements to Apache Spark 2.x, such as interactive querying of live data and unifying DataFrames and Datasets. You will also learn about the updates on the APIs and how DataFrames and Datasets affect SQL, machine learning, graph processing, and streaming. You will learn to use Spark as a big data operating system, understand how to implement advanced analytics on the new APIs, and explore how easy it is to use Spark in day-to-day tasks. Style and approach This book is an extensive guide to Apache Spark modules and tools and shows how Spark's functionality can be extended for real-time processing and storage with worked examples.

Mastering Apache Flink

Mastering Apache Flink
Author: Cybellium Ltd
Publisher: Cybellium Ltd
Total Pages: 180
Release: 2023-09-26
Genre: Computers
ISBN:

Harness the Power of Stream Processing and Batch Data Analytics Are you ready to dive into the world of stream processing and batch data analytics with Apache Flink? "Mastering Apache Flink" is your comprehensive guide to unlocking the full potential of this cutting-edge framework for real-time data processing. Whether you're a data engineer looking to optimize data flows or a data scientist aiming to derive insights from large datasets, this book equips you with the knowledge and tools to master the art of Flink-based data processing. Key Features: 1. In-Depth Exploration of Apache Flink: Immerse yourself in the core principles of Apache Flink, understanding its architecture, components, and capabilities. Build a solid foundation that empowers you to process data in both real-time and batch modes. 2. Installation and Configuration: Master the art of installing and configuring Apache Flink on various platforms. Learn about cluster setup, resource management, and configuration tuning for optimal performance. 3. Flink Data Streams: Dive into Flink's data stream processing capabilities. Explore event time processing, windowing, and stateful computations for real-time data analysis. 4. Flink Batch Processing: Uncover the power of Flink for batch data analytics. Learn how to process large datasets using Flink's batch processing mode for efficient analysis. 5. Flink SQL: Delve into Flink's SQL and Table API. Discover how to write SQL queries and perform transformations on structured and semi-structured data for intuitive data manipulation. 6. Flink's State Management: Master Flink's state management mechanisms. Learn how to manage application state for fault tolerance and how to work with savepoints and checkpoints. 7. Complex Event Processing with CEP: Explore Flink's complex event processing capabilities. Learn how to detect patterns, anomalies, and trends in data streams for real-time insights. 8. Machine Learning with FlinkML: Embark on a journey into machine learning with FlinkML. Learn how to implement predictive analytics and machine learning algorithms for data-driven models. 9. Flink Ecosystem and Integrations: Navigate Flink's ecosystem of libraries and integrations. From data ingestion with Apache Kafka to collaborative analytics with Zeppelin, explore tools that enhance Flink's functionalities. 10. Real-World Applications: Gain insights into real-world use cases of Apache Flink across industries. From IoT data processing to fraud detection, explore how organizations leverage Flink for real-time insights. Who This Book Is For: "Mastering Apache Flink" is an indispensable resource for data engineers, analysts, and IT professionals who want to excel in stream processing and batch data analytics using Flink. Whether you're new to Flink or seeking advanced techniques, this book will guide you through the intricacies and empower you to harness the full potential of this powerful framework.

Mastering Apache Storm

Mastering Apache Storm
Author: Ankit Jain
Publisher: Packt Publishing Ltd
Total Pages: 276
Release: 2017-08-16
Genre: Computers
ISBN: 1787120406

Master the intricacies of Apache Storm and develop real-time stream processing applications with ease About This Book Exploit the various real-time processing functionalities offered by Apache Storm such as parallelism, data partitioning, and more Integrate Storm with other Big Data technologies like Hadoop, HBase, and Apache Kafka An easy-to-understand guide to effortlessly create distributed applications with Storm Who This Book Is For If you are a Java developer who wants to enter into the world of real-time stream processing applications using Apache Storm, then this book is for you. No previous experience in Storm is required as this book starts from the basics. After finishing this book, you will be able to develop not-so-complex Storm applications. What You Will Learn Understand the core concepts of Apache Storm and real-time processing Follow the steps to deploy multiple nodes of Storm Cluster Create Trident topologies to support various message-processing semantics Make your cluster sharing effective using Storm scheduling Integrate Apache Storm with other Big Data technologies such as Hadoop, HBase, Kafka, and more Monitor the health of your Storm cluster In Detail Apache Storm is a real-time Big Data processing framework that processes large amounts of data reliably, guaranteeing that every message will be processed. Storm allows you to scale your data as it grows, making it an excellent platform to solve your big data problems. This extensive guide will help you understand right from the basics to the advanced topics of Storm. The book begins with a detailed introduction to real-time processing and where Storm fits in to solve these problems. You'll get an understanding of deploying Storm on clusters by writing a basic Storm Hello World example. Next we'll introduce you to Trident and you'll get a clear understanding of how you can develop and deploy a trident topology. We cover topics such as monitoring, Storm Parallelism, scheduler and log processing, in a very easy to understand manner. You will also learn how to integrate Storm with other well-known Big Data technologies such as HBase, Redis, Kafka, and Hadoop to realize the full potential of Storm. With real-world examples and clear explanations, this book will ensure you will have a thorough mastery of Apache Storm. You will be able to use this knowledge to develop efficient, distributed real-time applications to cater to your business needs. Style and approach This easy-to-follow guide is full of examples and real-world applications to help you get an in-depth understanding of Apache Storm. This book covers the basics thoroughly and also delves into the intermediate and slightly advanced concepts of application development with Apache Storm.

Mastering Apache Hbase

Mastering Apache Hbase
Author: Cybellium Ltd
Publisher: Cybellium Ltd
Total Pages: 345
Release:
Genre: Computers
ISBN:

Unlock the Power of Scalable and Distributed Data Storage with "Mastering Apache HBase" In the rapidly evolving landscape of data management, the ability to efficiently handle massive amounts of data has become an indispensable skill. "Mastering Apache HBase" serves as your definitive guide to mastering one of the most powerful and flexible distributed NoSQL databases – Apache HBase. Whether you're a seasoned data professional or a newcomer to the world of big data, this book equips you with the knowledge and skills needed to harness the full potential of Apache HBase. About the Book: "Mastering Apache HBase" takes you on a comprehensive journey through the intricacies of this robust and versatile NoSQL database. From the fundamentals of installation and configuration to advanced topics such as performance tuning and integration with other Big Data tools, this book covers it all. Each chapter is meticulously crafted to provide a deep understanding of the concepts along with practical, real-world applications. Key Features: · Solid Foundation: Build a strong understanding by exploring the core concepts of Apache HBase, including its architecture, data model, and storage components. · Efficient Data Management: Learn how to create tables, insert and retrieve data, and implement effective data modeling strategies that maximize performance and flexibility. · Scalability and Distribution: Dive into the distributed nature of Apache HBase and discover techniques to scale your cluster horizontally, ensuring seamless growth as your data needs expand. · Advanced Techniques: Master advanced topics such as data versioning, coprocessors, security, and backup and recovery, enabling you to tackle complex scenarios with confidence. · Performance Optimization: Uncover strategies and best practices for optimizing the performance of your Apache HBase cluster, ensuring your applications run smoothly even at scale. · Integration with Ecosystem: Explore how Apache HBase seamlessly integrates with other Big Data tools like Apache Hadoop, Apache Spark, and Apache Hive, opening up possibilities for data analysis and processing. · Real-World Use Cases: Learn through practical examples and use cases from various industries, including social media, e-commerce, finance, and more, to understand how Apache HBase can solve real-world data challenges. · Expert Insights: Benefit from the experience of seasoned professionals who provide insights, tips, and recommendations garnered from their years of working with Apache HBase. Who This Book Is For: "Mastering Apache HBase" is designed for data engineers, database administrators, and anyone involved in managing and analyzing large volumes of data. Whether you're a developer looking to expand your skillset or an experienced professional aiming to deepen your understanding of distributed data storage, this book is your ultimate resource. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com

Hadoop: The Definitive Guide

Hadoop: The Definitive Guide
Author: Tom White
Publisher: "O'Reilly Media, Inc."
Total Pages: 687
Release: 2012-05-10
Genre: Computers
ISBN: 1449338771

Ready to unlock the power of your data? With this comprehensive guide, you’ll learn how to build and maintain reliable, scalable, distributed systems with Apache Hadoop. This book is ideal for programmers looking to analyze datasets of any size, and for administrators who want to set up and run Hadoop clusters. You’ll find illuminating case studies that demonstrate how Hadoop is used to solve specific problems. This third edition covers recent changes to Hadoop, including material on the new MapReduce API, as well as MapReduce 2 and its more flexible execution model (YARN). Store large datasets with the Hadoop Distributed File System (HDFS) Run distributed computations with MapReduce Use Hadoop’s data and I/O building blocks for compression, data integrity, serialization (including Avro), and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster—or run Hadoop in the cloud Load data from relational databases into HDFS, using Sqoop Perform large-scale data processing with the Pig query language Analyze datasets with Hive, Hadoop’s data warehousing system Take advantage of HBase for structured and semi-structured data, and ZooKeeper for building distributed systems

Mastering Spark with R

Mastering Spark with R
Author: Javier Luraschi
Publisher: "O'Reilly Media, Inc."
Total Pages: 296
Release: 2019-10-07
Genre: Computers
ISBN: 1492046329

If you’re like most R users, you have deep knowledge and love for statistics. But as your organization continues to collect huge amounts of data, adding tools such as Apache Spark makes a lot of sense. With this practical book, data scientists and professionals working with large-scale data applications will learn how to use Spark from R to tackle big data and big compute problems. Authors Javier Luraschi, Kevin Kuo, and Edgar Ruiz show you how to use R with Spark to solve different data analysis problems. This book covers relevant data science topics, cluster computing, and issues that should interest even the most advanced users. Analyze, explore, transform, and visualize data in Apache Spark with R Create statistical models to extract information and predict outcomes; automate the process in production-ready workflows Perform analysis and modeling across many machines using distributed computing techniques Use large-scale data from multiple sources and different formats with ease from within Spark Learn about alternative modeling frameworks for graph processing, geospatial analysis, and genomics at scale Dive into advanced topics including custom transformations, real-time data processing, and creating custom Spark extensions