Mathematics of Financial Markets

Mathematics of Financial Markets
Author: Robert J Elliott
Publisher: Springer Science & Business Media
Total Pages: 298
Release: 2013-11-11
Genre: Mathematics
ISBN: 1475771460

This book explores the mathematics that underpins pricing models for derivative securities such as options, futures and swaps in modern markets. Models built upon the famous Black-Scholes theory require sophisticated mathematical tools drawn from modern stochastic calculus. However, many of the underlying ideas can be explained more simply within a discrete-time framework. This is developed extensively in this substantially revised second edition to motivate the technically more demanding continuous-time theory.

Risk-Neutral Valuation

Risk-Neutral Valuation
Author: Nicholas H. Bingham
Publisher: Springer Science & Business Media
Total Pages: 447
Release: 2013-06-29
Genre: Mathematics
ISBN: 1447138562

This second edition - completely up to date with new exercises - provides a comprehensive and self-contained treatment of the probabilistic theory behind the risk-neutral valuation principle and its application to the pricing and hedging of financial derivatives. On the probabilistic side, both discrete- and continuous-time stochastic processes are treated, with special emphasis on martingale theory, stochastic integration and change-of-measure techniques. Based on firm probabilistic foundations, general properties of discrete- and continuous-time financial market models are discussed.

Numerical Solution of Stochastic Differential Equations with Jumps in Finance

Numerical Solution of Stochastic Differential Equations with Jumps in Finance
Author: Eckhard Platen
Publisher: Springer Science & Business Media
Total Pages: 868
Release: 2010-07-23
Genre: Mathematics
ISBN: 364213694X

In financial and actuarial modeling and other areas of application, stochastic differential equations with jumps have been employed to describe the dynamics of various state variables. The numerical solution of such equations is more complex than that of those only driven by Wiener processes, described in Kloeden & Platen: Numerical Solution of Stochastic Differential Equations (1992). The present monograph builds on the above-mentioned work and provides an introduction to stochastic differential equations with jumps, in both theory and application, emphasizing the numerical methods needed to solve such equations. It presents many new results on higher-order methods for scenario and Monte Carlo simulation, including implicit, predictor corrector, extrapolation, Markov chain and variance reduction methods, stressing the importance of their numerical stability. Furthermore, it includes chapters on exact simulation, estimation and filtering. Besides serving as a basic text on quantitative methods, it offers ready access to a large number of potential research problems in an area that is widely applicable and rapidly expanding. Finance is chosen as the area of application because much of the recent research on stochastic numerical methods has been driven by challenges in quantitative finance. Moreover, the volume introduces readers to the modern benchmark approach that provides a general framework for modeling in finance and insurance beyond the standard risk-neutral approach. It requires undergraduate background in mathematical or quantitative methods, is accessible to a broad readership, including those who are only seeking numerical recipes, and includes exercises that help the reader develop a deeper understanding of the underlying mathematics.

Risk Analysis in Finance and Insurance, Second Edition

Risk Analysis in Finance and Insurance, Second Edition
Author: Alexander Melnikov
Publisher: CRC Press
Total Pages: 330
Release: 2011-04-25
Genre: Mathematics
ISBN: 1420070525

Risk Analysis in Finance and Insurance, Second Edition presents an accessible yet comprehensive introduction to the main concepts and methods that transform risk management into a quantitative science. Taking into account the interdisciplinary nature of risk analysis, the author discusses many important ideas from mathematics, finance, and actuarial science in a simplified manner. He explores the interconnections among these disciplines and encourages readers toward further study of the subject. This edition continues to study risks associated with financial and insurance contracts, using an approach that estimates the value of future payments based on current financial, insurance, and other information. New to the Second Edition Expanded section on the foundations of probability and stochastic analysis Coverage of new topics, including financial markets with stochastic volatility, risk measures, risk-adjusted performance measures, and equity-linked insurance More worked examples and problems Reorganized and expanded, this updated book illustrates how to use quantitative methods of stochastic analysis in modern financial mathematics. These methods can be naturally extended and applied in actuarial science, thus leading to unified methods of risk analysis and management.

Martingale Methods in Financial Modelling

Martingale Methods in Financial Modelling
Author: Marek Musiela
Publisher: Springer Science & Business Media
Total Pages: 521
Release: 2013-06-29
Genre: Mathematics
ISBN: 3662221322

A comprehensive and self-contained treatment of the theory and practice of option pricing. The role of martingale methods in financial modeling is exposed. The emphasis is on using arbitrage-free models already accepted by the market as well as on building the new ones. Standard calls and puts together with numerous examples of exotic options such as barriers and quantos, for example on stocks, indices, currencies and interest rates are analysed. The importance of choosing a convenient numeraire in price calculations is explained. Mathematical and financial language is used so as to bring mathematicians closer to practical problems of finance and presenting to the industry useful maths tools.

Paris-Princeton Lectures on Mathematical Finance 2010

Paris-Princeton Lectures on Mathematical Finance 2010
Author: Areski Cousin
Publisher: Springer Science & Business Media
Total Pages: 374
Release: 2011-06-29
Genre: Mathematics
ISBN: 3642146597

The Paris-Princeton Lectures in Financial Mathematics, of which this is the fourth volume, publish cutting-edge research in self-contained, expository articles from outstanding specialists - established or on the rise! The aim is to produce a series of articles that can serve as an introductory reference source for research in the field. The articles are the result of frequent exchanges between the finance and financial mathematics groups in Paris and Princeton. The present volume sets standards with five articles by: 1. Areski Cousin, Monique Jeanblanc and Jean-Paul Laurent, 2. Stéphane Crépey, 3. Olivier Guéant, Jean-Michel Lasry and Pierre-Louis Lions, 4. David Hobson and 5. Peter Tankov.

Credit Risk: Modeling, Valuation and Hedging

Credit Risk: Modeling, Valuation and Hedging
Author: Tomasz R. Bielecki
Publisher: Springer Science & Business Media
Total Pages: 517
Release: 2013-03-14
Genre: Business & Economics
ISBN: 3662048213

The motivation for the mathematical modeling studied in this text on developments in credit risk research is the bridging of the gap between mathematical theory of credit risk and the financial practice. Mathematical developments are covered thoroughly and give the structural and reduced-form approaches to credit risk modeling. Included is a detailed study of various arbitrage-free models of default term structures with several rating grades.

Introduction to Stochastic Finance

Introduction to Stochastic Finance
Author: Jia-An Yan
Publisher: Springer
Total Pages: 406
Release: 2018-10-10
Genre: Mathematics
ISBN: 9811316570

This book gives a systematic introduction to the basic theory of financial mathematics, with an emphasis on applications of martingale methods in pricing and hedging of contingent claims, interest rate term structure models, and expected utility maximization problems. The general theory of static risk measures, basic concepts and results on markets of semimartingale model, and a numeraire-free and original probability based framework for financial markets are also included. The basic theory of probability and Ito's theory of stochastic analysis, as preliminary knowledge, are presented.