Strongly Interacting Quantum Systems out of Equilibrium

Strongly Interacting Quantum Systems out of Equilibrium
Author: Thierry Giamarchi
Publisher: Oxford University Press
Total Pages: 464
Release: 2016-07-07
Genre: Science
ISBN: 0191080543

Over the last decade new experimental tools and theoretical concepts are providing new insights into collective nonequilibrium behavior of quantum systems. The exquisite control provided by laser trapping and cooling techniques allows us to observe the behavior of condensed bose and degenerate Fermi gases under nonequilibrium drive or after `quenches' in which a Hamiltonian parameter is suddenly or slowly changed. On the solid state front, high intensity short-time pulses and fast (femtosecond) probes allow solids to be put into highly excited states and probed before relaxation and dissipation occur. Experimental developments are matched by progress in theoretical techniques ranging from exact solutions of strongly interacting nonequilibrium models to new approaches to nonequilibrium numerics. The summer school `Strongly interacting quantum systems out of equilibrium' held at the Les Houches School of Physics as its XCIX session was designed to summarize this progress, lay out the open questions and define directions for future work. This books collects the lecture notes of the main courses given in this summer school.

Many-Body Quantum Theory in Condensed Matter Physics

Many-Body Quantum Theory in Condensed Matter Physics
Author: Henrik Bruus
Publisher: Oxford University Press
Total Pages: 458
Release: 2004-09-02
Genre: Science
ISBN: 0198566336

The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.

Many-body Problem, The: An Encyclopedia Of Exactly Solved Models In One Dimension (3rd Printing With Revisions And Corrections)

Many-body Problem, The: An Encyclopedia Of Exactly Solved Models In One Dimension (3rd Printing With Revisions And Corrections)
Author: Daniel C Mattis
Publisher: World Scientific
Total Pages: 992
Release: 1993-03-15
Genre: Science
ISBN: 9814505579

This book differs from its predecessor, Lieb & Mattis Mathematical Physics in One Dimension, in a number of important ways. Classic discoveries which once had to be omitted owing to lack of space — such as the seminal paper by Fermi, Pasta and Ulam on lack of ergodicity of the linear chain, or Bethe's original paper on the Bethe ansatz — can now be incorporated. Many applications which did not even exist in 1966 (some of which were originally spawned by the publication of Lieb & Mattis) are newly included. Among these, this new book contains critical surveys of a number of important developments: the exact solution of the Hubbard model, the concept of spinons, the Haldane gap in magnetic spin-one chains, bosonization and fermionization, solitions and the approach to thermodynamic equilibrium, quantum statistical mechanics, localization of normal modes and eigenstates in disordered chains, and a number of other contemporary concerns.

Disorder-Free Localization

Disorder-Free Localization
Author: Adam Smith
Publisher: Springer
Total Pages: 152
Release: 2019-07-01
Genre: Science
ISBN: 3030208516

This thesis is a contribution at the intersection of a number of active fields in theoretical and experimental condensed matter, particularly those concerned with disordered systems, integrable models, lattice gauge theories, and non-equilibrium quantum dynamics. It contributes an important new facet to our understanding of relaxation in isolated quantum systems by conclusively demonstrating localization without disorder for the first time, answering a long-standing question in this field. This is achieved by introducing a family of models – intimately related to paradigmatic condensed matter models – and studying their non-equilibrium dynamics through a combination of exact analytical mappings and an array of numerical techniques. This thesis also makes contributions relevant to the theory of quantum chaotic behaviour by calculating novel, and often intractable, entanglement measures and out-of-time-ordered correlators. A concrete and feasible proposal is also made for the experimental realization and dynamical study of the family of models, based on currently available technologies.

Condensed Matter Field Theory

Condensed Matter Field Theory
Author: Alexander Altland
Publisher: Cambridge University Press
Total Pages: 785
Release: 2010-03-11
Genre: Science
ISBN: 0521769752

This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.

The Flow Equation Approach to Many-Particle Systems

The Flow Equation Approach to Many-Particle Systems
Author: Stefan Kehrein
Publisher: Springer
Total Pages: 179
Release: 2007-01-09
Genre: Science
ISBN: 3540340688

This self-contained introduction addresses the novel flow equation approach for many particle systems and provides an up-to-date review of the subject. The text first discusses the general ideas and concepts of the flow equation method, and then in a second part illustrates them with various applications in condensed matter theory. The third and last part of the book contains an outlook with current perspectives for future research.

Quantum Signatures of Chaos

Quantum Signatures of Chaos
Author: Fritz Haake
Publisher: Springer Science & Business Media
Total Pages: 491
Release: 2013-03-09
Genre: Science
ISBN: 3662045060

This classic text provides an excellent introduction to a new and rapidly developing field of research. Now well established as a textbook in this rapidly developing field of research, the new edition is much enlarged and covers a host of new results.

Manipulating Quantum Systems

Manipulating Quantum Systems
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 315
Release: 2020-09-14
Genre: Science
ISBN: 0309499542

The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.

Metal-Insulator Transitions

Metal-Insulator Transitions
Author: Nevill Mott
Publisher: CRC Press
Total Pages: 287
Release: 2004-01-14
Genre: Technology & Engineering
ISBN: 1466576456

This is a second edition of a classic book. Written by the late, great Sir Nevill Mott (Britain's last Nobel Prize winner for Physics), Metal Insulator Transitions has been greatly updated and expanded to further enhance its already enviable reputation.

Ultracold Atoms in Optical Lattices

Ultracold Atoms in Optical Lattices
Author: Maciej Lewenstein
Publisher: Oxford University Press
Total Pages: 494
Release: 2012-03-08
Genre: Science
ISBN: 0199573123

This book explores the physics of atoms frozen to ultralow temperatures and trapped in periodic light structures. It introduces the reader to the spectacular progress achieved on the field of ultracold gases and describes present and future challenges in condensed matter physics, high energy physics, and quantum computation.