Deep Learning and the Game of Go

Deep Learning and the Game of Go
Author: Kevin Ferguson
Publisher: Simon and Schuster
Total Pages: 611
Release: 2019-01-06
Genre: Computers
ISBN: 1638354014

Summary Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex reasoning tasks by building a Go-playing AI. After exposing you to the foundations of machine and deep learning, you'll use Python to build a bot and then teach it the rules of the game. Foreword by Thore Graepel, DeepMind Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The ancient strategy game of Go is an incredible case study for AI. In 2016, a deep learning-based system shocked the Go world by defeating a world champion. Shortly after that, the upgraded AlphaGo Zero crushed the original bot by using deep reinforcement learning to master the game. Now, you can learn those same deep learning techniques by building your own Go bot! About the Book Deep Learning and the Game of Go introduces deep learning by teaching you to build a Go-winning bot. As you progress, you'll apply increasingly complex training techniques and strategies using the Python deep learning library Keras. You'll enjoy watching your bot master the game of Go, and along the way, you'll discover how to apply your new deep learning skills to a wide range of other scenarios! What's inside Build and teach a self-improving game AI Enhance classical game AI systems with deep learning Implement neural networks for deep learning About the Reader All you need are basic Python skills and high school-level math. No deep learning experience required. About the Author Max Pumperla and Kevin Ferguson are experienced deep learning specialists skilled in distributed systems and data science. Together, Max and Kevin built the open source bot BetaGo. Table of Contents PART 1 - FOUNDATIONS Toward deep learning: a machine-learning introduction Go as a machine-learning problem Implementing your first Go bot PART 2 - MACHINE LEARNING AND GAME AI Playing games with tree search Getting started with neural networks Designing a neural network for Go data Learning from data: a deep-learning bot Deploying bots in the wild Learning by practice: reinforcement learning Reinforcement learning with policy gradients Reinforcement learning with value methods Reinforcement learning with actor-critic methods PART 3 - GREATER THAN THE SUM OF ITS PARTS AlphaGo: Bringing it all together AlphaGo Zero: Integrating tree search with reinforcement learning

Machine Learning With Go

Machine Learning With Go
Author: Daniel Whitenack
Publisher: Packt Publishing Ltd
Total Pages: 293
Release: 2017-09-26
Genre: Computers
ISBN: 1785883909

Build simple, maintainable, and easy to deploy machine learning applications. About This Book Build simple, but powerful, machine learning applications that leverage Go's standard library along with popular Go packages. Learn the statistics, algorithms, and techniques needed to successfully implement machine learning in Go Understand when and how to integrate certain types of machine learning model in Go applications. Who This Book Is For This book is for Go developers who are familiar with the Go syntax and can develop, build, and run basic Go programs. If you want to explore the field of machine learning and you love Go, then this book is for you! Machine Learning with Go will give readers the practical skills to perform the most common machine learning tasks with Go. Familiarity with some statistics and math topics is necessary. What You Will Learn Learn about data gathering, organization, parsing, and cleaning. Explore matrices, linear algebra, statistics, and probability. See how to evaluate and validate models. Look at regression, classification, clustering. Learn about neural networks and deep learning Utilize times series models and anomaly detection. Get to grip with techniques for deploying and distributing analyses and models. Optimize machine learning workflow techniques In Detail The mission of this book is to turn readers into productive, innovative data analysts who leverage Go to build robust and valuable applications. To this end, the book clearly introduces the technical aspects of building predictive models in Go, but it also helps the reader understand how machine learning workflows are being applied in real-world scenarios. Machine Learning with Go shows readers how to be productive in machine learning while also producing applications that maintain a high level of integrity. It also gives readers patterns to overcome challenges that are often encountered when trying to integrate machine learning in an engineering organization. The readers will begin by gaining a solid understanding of how to gather, organize, and parse real-work data from a variety of sources. Readers will then develop a solid statistical toolkit that will allow them to quickly understand gain intuition about the content of a dataset. Finally, the readers will gain hands-on experience implementing essential machine learning techniques (regression, classification, clustering, and so on) with the relevant Go packages. Finally, the reader will have a solid machine learning mindset and a powerful Go toolkit of techniques, packages, and example implementations. Style and approach This book connects the fundamental, theoretical concepts behind Machine Learning to practical implementations using the Go programming language.

Machine Learning With Go - Second Edition

Machine Learning With Go - Second Edition
Author: Daniel Whitenack
Publisher:
Total Pages: 328
Release: 2019-04-30
Genre: Computers
ISBN: 9781789619898

Infuse an extra layer of intelligence into your Go applications with machine learning and AI Key Features Build simple, maintainable, and easy to deploy machine learning applications with popular Go packages Learn the statistics, algorithms, and techniques to implement machine learning Overcome the common challenges faced while deploying and scaling the machine learning workflows Book Description This updated edition of the popular Machine Learning With Go shows you how to overcome the common challenges of integrating analysis and machine learning code within an existing engineering organization. Machine Learning With Go, Second Edition, will begin by helping you gain an understanding of how to gather, organize, and parse real-world data from a variety of sources. The book also provides absolute coverage in developing groundbreaking machine learning pipelines including predictive models, data visualizations, and statistical techniques. Up next, you will learn the thorough utilization of Golang libraries including golearn, gorgonia, gosl, hector, and mat64. You will discover the various TensorFlow capabilities, along with building simple neural networks and integrating them into machine learning models. You will also gain hands-on experience implementing essential machine learning techniques such as regression, classification, and clustering with the relevant Go packages. Furthermore, you will deep dive into the various Go tools that help you build deep neural networks. Lastly, you will become well versed with best practices for machine learning model tuning and optimization. By the end of the book, you will have a solid machine learning mindset and a powerful Go toolkit of techniques, packages, and example implementations What you will learn Become well versed with data processing, parsing, and cleaning using Go packages Learn to gather data from various sources and in various real-world formats Perform regression, classification, and image processing with neural networks Evaluate and detect anomalies in a time series model Understand common deep learning architectures to learn how each model is built Learn how to optimize, build, and scale machine learning workflows Discover the best practices for machine learning model tuning for successful deployments Who this book is for This book is primarily for Go programmers who want to become a machine learning engineer and to build a solid machine learning mindset along with a good hold on Go packages. This is also useful for data analysts, data engineers, machine learning users who want to run their machine learning experiments using the Go ecosystem. Prior understanding of linear algebra is required to benefit from this book

Hands-On Deep Learning with Go

Hands-On Deep Learning with Go
Author: Gareth Seneque
Publisher: Packt Publishing Ltd
Total Pages: 228
Release: 2019-08-08
Genre: Computers
ISBN: 1789347882

Apply modern deep learning techniques to build and train deep neural networks using Gorgonia Key FeaturesGain a practical understanding of deep learning using GolangBuild complex neural network models using Go libraries and GorgoniaTake your deep learning model from design to deployment with this handy guideBook Description Go is an open source programming language designed by Google for handling large-scale projects efficiently. The Go ecosystem comprises some really powerful deep learning tools such as DQN and CUDA. With this book, you'll be able to use these tools to train and deploy scalable deep learning models from scratch. This deep learning book begins by introducing you to a variety of tools and libraries available in Go. It then takes you through building neural networks, including activation functions and the learning algorithms that make neural networks tick. In addition to this, you'll learn how to build advanced architectures such as autoencoders, restricted Boltzmann machines (RBMs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and more. You'll also understand how you can scale model deployments on the AWS cloud infrastructure for training and inference. By the end of this book, you'll have mastered the art of building, training, and deploying deep learning models in Go to solve real-world problems. What you will learnExplore the Go ecosystem of libraries and communities for deep learningGet to grips with Neural Networks, their history, and how they workDesign and implement Deep Neural Networks in GoGet a strong foundation of concepts such as Backpropagation and MomentumBuild Variational Autoencoders and Restricted Boltzmann Machines using GoBuild models with CUDA and benchmark CPU and GPU modelsWho this book is for This book is for data scientists, machine learning engineers, and AI developers who want to build state-of-the-art deep learning models using Go. Familiarity with basic machine learning concepts and Go programming is required to get the best out of this book.

Go Machine Learning Projects

Go Machine Learning Projects
Author: Xuanyi Chew
Publisher: Packt Publishing Ltd
Total Pages: 339
Release: 2018-11-30
Genre: Mathematics
ISBN: 1788995198

Work through exciting projects to explore the capabilities of Go and Machine Learning Key FeaturesExplore ML tasks and Go’s machine learning ecosystemImplement clustering, regression, classification, and neural networks with GoGet to grips with libraries such as Gorgonia, Gonum, and GoCv for training models in GoBook Description Go is the perfect language for machine learning; it helps to clearly describe complex algorithms, and also helps developers to understand how to run efficient optimized code. This book will teach you how to implement machine learning in Go to make programs that are easy to deploy and code that is not only easy to understand and debug, but also to have its performance measured. The book begins by guiding you through setting up your machine learning environment with Go libraries and capabilities. You will then plunge into regression analysis of a real-life house pricing dataset and build a classification model in Go to classify emails as spam or ham. Using Gonum, Gorgonia, and STL, you will explore time series analysis along with decomposition and clean up your personal Twitter timeline by clustering tweets. In addition to this, you will learn how to recognize handwriting using neural networks and convolutional neural networks. Lastly, you'll learn how to choose the most appropriate machine learning algorithms to use for your projects with the help of a facial detection project. By the end of this book, you will have developed a solid machine learning mindset, a strong hold on the powerful Go toolkit, and a sound understanding of the practical implementations of machine learning algorithms in real-world projects. What you will learnSet up a machine learning environment with Go librariesUse Gonum to perform regression and classificationExplore time series models and decompose trends with Go librariesClean up your Twitter timeline by clustering tweetsLearn to use external services for your machine learning needsRecognize handwriting using neural networks and CNN with GorgoniaImplement facial recognition using GoCV and OpenCVWho this book is for If you’re a machine learning engineer, data science professional, or Go programmer who wants to implement machine learning in your real-world projects and make smarter applications easily, this book is for you. Some coding experience in Golang and knowledge of basic machine learning concepts will help you in understanding the concepts covered in this book.

Machine Learning for Kids

Machine Learning for Kids
Author: Dale Lane
Publisher: No Starch Press
Total Pages: 290
Release: 2021-01-19
Genre: Computers
ISBN: 1718500572

A hands-on, application-based introduction to machine learning and artificial intelligence (AI) that guides young readers through creating compelling AI-powered games and applications using the Scratch programming language. Machine learning (also known as ML) is one of the building blocks of AI, or artificial intelligence. AI is based on the idea that computers can learn on their own, with your help. Machine Learning for Kids will introduce you to machine learning, painlessly. With this book and its free, Scratch-based, award-winning companion website, you'll see how easy it is to add machine learning to your own projects. You don't even need to know how to code! As you work through the book you'll discover how machine learning systems can be taught to recognize text, images, numbers, and sounds, and how to train your models to improve their accuracy. You'll turn your models into fun computer games and apps, and see what happens when they get confused by bad data. You'll build 13 projects step-by-step from the ground up, including: • Rock, Paper, Scissors game that recognizes your hand shapes • An app that recommends movies based on other movies that you like • A computer character that reacts to insults and compliments • An interactive virtual assistant (like Siri or Alexa) that obeys commands • An AI version of Pac-Man, with a smart character that knows how to avoid ghosts NOTE: This book includes a Scratch tutorial for beginners, and step-by-step instructions for every project. Ages 12+

AI and Machine Learning for Coders

AI and Machine Learning for Coders
Author: Laurence Moroney
Publisher: O'Reilly Media
Total Pages: 393
Release: 2020-10-01
Genre: Computers
ISBN: 1492078166

If you're looking to make a career move from programmer to AI specialist, this is the ideal place to start. Based on Laurence Moroney's extremely successful AI courses, this introductory book provides a hands-on, code-first approach to help you build confidence while you learn key topics. You'll understand how to implement the most common scenarios in machine learning, such as computer vision, natural language processing (NLP), and sequence modeling for web, mobile, cloud, and embedded runtimes. Most books on machine learning begin with a daunting amount of advanced math. This guide is built on practical lessons that let you work directly with the code. You'll learn: How to build models with TensorFlow using skills that employers desire The basics of machine learning by working with code samples How to implement computer vision, including feature detection in images How to use NLP to tokenize and sequence words and sentences Methods for embedding models in Android and iOS How to serve models over the web and in the cloud with TensorFlow Serving

Grokking Machine Learning

Grokking Machine Learning
Author: Luis Serrano
Publisher: Simon and Schuster
Total Pages: 510
Release: 2021-12-14
Genre: Computers
ISBN: 1617295914

Grokking Machine Learning presents machine learning algorithms and techniques in a way that anyone can understand. This book skips the confused academic jargon and offers clear explanations that require only basic algebra. As you go, you'll build interesting projects with Python, including models for spam detection and image recognition. You'll also pick up practical skills for cleaning and preparing data.

Grokking Deep Learning

Grokking Deep Learning
Author: Andrew W. Trask
Publisher: Simon and Schuster
Total Pages: 475
Release: 2019-01-23
Genre: Computers
ISBN: 163835720X

Summary Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning, a branch of artificial intelligence, teaches computers to learn by using neural networks, technology inspired by the human brain. Online text translation, self-driving cars, personalized product recommendations, and virtual voice assistants are just a few of the exciting modern advancements possible thanks to deep learning. About the Book Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare! When you're done, you'll be fully prepared to move on to mastering deep learning frameworks. What's inside The science behind deep learning Building and training your own neural networks Privacy concepts, including federated learning Tips for continuing your pursuit of deep learning About the Reader For readers with high school-level math and intermediate programming skills. About the Author Andrew Trask is a PhD student at Oxford University and a research scientist at DeepMind. Previously, Andrew was a researcher and analytics product manager at Digital Reasoning, where he trained the world's largest artificial neural network and helped guide the analytics roadmap for the Synthesys cognitive computing platform. Table of Contents Introducing deep learning: why you should learn it Fundamental concepts: how do machines learn? Introduction to neural prediction: forward propagation Introduction to neural learning: gradient descent Learning multiple weights at a time: generalizing gradient descent Building your first deep neural network: introduction to backpropagation How to picture neural networks: in your head and on paper Learning signal and ignoring noise:introduction to regularization and batching Modeling probabilities and nonlinearities: activation functions Neural learning about edges and corners: intro to convolutional neural networks Neural networks that understand language: king - man + woman == ? Neural networks that write like Shakespeare: recurrent layers for variable-length data Introducing automatic optimization: let's build a deep learning framework Learning to write like Shakespeare: long short-term memory Deep learning on unseen data: introducing federated learning Where to go from here: a brief guide

Approaching (Almost) Any Machine Learning Problem

Approaching (Almost) Any Machine Learning Problem
Author: Abhishek Thakur
Publisher: Abhishek Thakur
Total Pages: 300
Release: 2020-07-04
Genre: Computers
ISBN: 8269211508

This is not a traditional book. The book has a lot of code. If you don't like the code first approach do not buy this book. Making code available on Github is not an option. This book is for people who have some theoretical knowledge of machine learning and deep learning and want to dive into applied machine learning. The book doesn't explain the algorithms but is more oriented towards how and what should you use to solve machine learning and deep learning problems. The book is not for you if you are looking for pure basics. The book is for you if you are looking for guidance on approaching machine learning problems. The book is best enjoyed with a cup of coffee and a laptop/workstation where you can code along. Table of contents: - Setting up your working environment - Supervised vs unsupervised learning - Cross-validation - Evaluation metrics - Arranging machine learning projects - Approaching categorical variables - Feature engineering - Feature selection - Hyperparameter optimization - Approaching image classification & segmentation - Approaching text classification/regression - Approaching ensembling and stacking - Approaching reproducible code & model serving There are no sub-headings. Important terms are written in bold. I will be answering all your queries related to the book and will be making YouTube tutorials to cover what has not been discussed in the book. To ask questions/doubts, visit this link: https://bit.ly/aamlquestions And Subscribe to my youtube channel: https://bit.ly/abhitubesub