Stochastic Analysis and Related Topics VI

Stochastic Analysis and Related Topics VI
Author: Laurent Decreusefond
Publisher: Springer Science & Business Media
Total Pages: 414
Release: 2012-12-06
Genre: Mathematics
ISBN: 146122022X

This volume contains the contributions of the participants of the Sixth Oslo-Silivri Workshop on Stochastic Analysis, held in Geilo from July 29 to August 6, 1996. There are two main lectures " Stochastic Differential Equations with Memory, by S.E.A. Mohammed, " Backward SDE's and Viscosity Solutions of Second Order Semilinear PDE's, by E. Pardoux. The main lectures are presented at the beginning of the volume. There is also a review paper at the third place about the stochastic calculus of variations on Lie groups. The contributing papers vary from SPDEs to Non-Kolmogorov type probabilistic models. We would like to thank " VISTA, a research cooperation between Norwegian Academy of Sciences and Letters and Den Norske Stats Oljeselskap (Statoil), " CNRS, Centre National de la Recherche Scientifique, " The Department of Mathematics of the University of Oslo, " The Ecole Nationale Superieure des Telecommunications, for their financial support. L. Decreusefond J. Gjerde B. 0ksendal A.S. Ustunel PARTICIPANTS TO THE 6TH WORKSHOP ON STOCHASTIC ANALYSIS Vestlia HØyfjellshotell, Geilo, Norway, July 28 -August 4, 1996. E-mail: [email protected] Aureli ALABERT Departament de Matematiques Laurent DECREUSEFOND Universitat Autonoma de Barcelona Ecole Nationale Superieure des Telecom 08193-Bellaterra munications CATALONIA (Spain) Departement Reseaux E-mail: [email protected] 46, rue Barrault Halvard ARNTZEN 75634 Paris Cedex 13 Dept. of Mathematics FRANCE University of Oslo E-mail: [email protected] Box 1053 Blindern Laurent DENIS N-0316 Oslo C.M.I

Trends in Stochastic Analysis

Trends in Stochastic Analysis
Author: Jochen Blath
Publisher: Cambridge University Press
Total Pages: 391
Release: 2009-04-09
Genre: Mathematics
ISBN: 1139476017

Presenting important trends in the field of stochastic analysis, this collection of thirteen articles provides an overview of recent developments and new results. Written by leading experts in the field, the articles cover a wide range of topics, ranging from an alternative set-up of rigorous probability to the sampling of conditioned diffusions. Applications in physics and biology are treated, with discussion of Feynman formulas, intermittency of Anderson models and genetic inference. A large number of the articles are topical surveys of probabilistic tools such as chaining techniques, and of research fields within stochastic analysis, including stochastic dynamics and multifractal analysis. Showcasing the diversity of research activities in the field, this book is essential reading for any student or researcher looking for a guide to modern trends in stochastic analysis and neighbouring fields.

Random Dynamical Systems

Random Dynamical Systems
Author: Ludwig Arnold
Publisher: Springer Science & Business Media
Total Pages: 590
Release: 2013-04-17
Genre: Mathematics
ISBN: 3662128780

The first systematic presentation of the theory of dynamical systems under the influence of randomness, this book includes products of random mappings as well as random and stochastic differential equations. The basic multiplicative ergodic theorem is presented, providing a random substitute for linear algebra. On its basis, many applications are detailed. Numerous instructive examples are treated analytically or numerically.

Applied Stochastic Control of Jump Diffusions

Applied Stochastic Control of Jump Diffusions
Author: Bernt Øksendal
Publisher: Springer
Total Pages: 439
Release: 2019-04-17
Genre: Business & Economics
ISBN: 3030027813

Here is a rigorous introduction to the most important and useful solution methods of various types of stochastic control problems for jump diffusions and its applications. Discussion includes the dynamic programming method and the maximum principle method, and their relationship. The text emphasises real-world applications, primarily in finance. Results are illustrated by examples, with end-of-chapter exercises including complete solutions. The 2nd edition adds a chapter on optimal control of stochastic partial differential equations driven by Lévy processes, and a new section on optimal stopping with delayed information. Basic knowledge of stochastic analysis, measure theory and partial differential equations is assumed.

Stochastic Differential Equations and Applications

Stochastic Differential Equations and Applications
Author: X Mao
Publisher: Elsevier
Total Pages: 445
Release: 2007-12-30
Genre: Mathematics
ISBN: 085709940X

This advanced undergraduate and graduate text has now been revised and updated to cover the basic principles and applications of various types of stochastic systems, with much on theory and applications not previously available in book form. The text is also useful as a reference source for pure and applied mathematicians, statisticians and probabilists, engineers in control and communications, and information scientists, physicists and economists. - Has been revised and updated to cover the basic principles and applications of various types of stochastic systems - Useful as a reference source for pure and applied mathematicians, statisticians and probabilists, engineers in control and communications, and information scientists, physicists and economists

Diffusion Processes and Related Problems in Analysis, Volume II

Diffusion Processes and Related Problems in Analysis, Volume II
Author: V. Wihstutz
Publisher: Springer Science & Business Media
Total Pages: 344
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461203899

During the weekend of March 16-18, 1990 the University of North Carolina at Charlotte hosted a conference on the subject of stochastic flows, as part of a Special Activity Month in the Department of Mathematics. This conference was supported jointly by a National Science Foundation grant and by the University of North Carolina at Charlotte. Originally conceived as a regional conference for researchers in the Southeastern United States, the conference eventually drew participation from both coasts of the U. S. and from abroad. This broad-based par ticipation reflects a growing interest in the viewpoint of stochastic flows, particularly in probability theory and more generally in mathematics as a whole. While the theory of deterministic flows can be considered classical, the stochastic counterpart has only been developed in the past decade, through the efforts of Harris, Kunita, Elworthy, Baxendale and others. Much of this work was done in close connection with the theory of diffusion processes, where dynamical systems implicitly enter probability theory by means of stochastic differential equations. In this regard, the Charlotte conference served as a natural outgrowth of the Conference on Diffusion Processes, held at Northwestern University, Evanston Illinois in October 1989, the proceedings of which has now been published as Volume I of the current series. Due to this natural flow of ideas, and with the assistance and support of the Editorial Board, it was decided to organize the present two-volume effort.