A Low Temperature Distillation System for Separating Mixtures of Protium, Deuterium, and Tritium Isotopes

A Low Temperature Distillation System for Separating Mixtures of Protium, Deuterium, and Tritium Isotopes
Author:
Publisher:
Total Pages:
Release: 1985
Genre:
ISBN:

A low temperature (24 K) distillation system for separating mixtures of hydrogen isotopes has been designed, fabricated, and delivered for use as the main component of the Hydrogen Isotope Separation System (HISS) at Mound. The HISS will handle feed mixtures of all six isotopic species of hydrogen (H2, HD, HT, D2, DT, T2) and will enrich the tritium while producing a stackable raffinate. Arther D. Little, Inc. (ADL) was the prime contractor for the distillation system. The design and fabrication techniques used for the HISS distillation system are similar to those used for previous stills which were also designed and built by ADL. The distillation system was tested with mixtures of protium and deuterium at the ADL shop. This system, as well as the feed, product, and raffinate handling systems are presently being installed at Mound where integrated testing is scheduled next calendar year.

Helium and Hydrogen Isotope Adsorption and Separation in Metal-Organic Frameworks

Helium and Hydrogen Isotope Adsorption and Separation in Metal-Organic Frameworks
Author: Ingrid Zaiser
Publisher: Cuvillier Verlag
Total Pages: 200
Release: 2016-10-31
Genre: Science
ISBN: 3736983778

The separation of isotopes has always been a challenge because of their identical size, shape and thermodynamic properties. Nowadays, the extraction of deuterium is performed e.g. by the Girdler Sulfid process or cryogenic distillation, which lead to low separation factors (below 2.5) in combination with high energy costs. The standard way to produce helium-3 is to skim it as a byproduct of the radioactive tritium decay. In this thesis, two alternative approaches have been investigated for the separation of light isotopes, Quantum Sieving and Chemical Affinity Sieving . While Quantum Sieving is based on confinement in small pores, Chemical Affinity Sieving relies on strong adsorption sites. Both methods use the mass difference of the isotopes, which is related to their zero-point energy. The microporous metal-organic frameworks are excellent candidates for studying these quantum effects due to their well-defined pore structure and the possibility to introduce strong adsorption sites directly into the framework. The samples have been exposed to an isotope mixture and the adsorbed quantity of each isotope was detected by low-temperature thermal desorption spectroscopy (TDS). The ratio of the desorbed amount of the isotopes leads directly to the selectivity (separation factor). The selectivity is determined as a function of exposure time and temperature and exhibits the highest value of 25 observed for hydrogen isotopes at temperatures well above the boiling point of liquid nitrogen.

Sulfur-isotope Separation by Distillation

Sulfur-isotope Separation by Distillation
Author:
Publisher:
Total Pages:
Release: 1982
Genre:
ISBN:

Sulfur-isotope separation by low-temperature distillation of hydrogen sulfide was studied in an 8-m, 25-mm diameter distillation column. Column temperature was controlled by a propane-propylene heat pipe. Column packing HETP was measured using nitric oxide in the column. The column was operated at pressures from 45 to 125 kPa. The relative volatility of S-32 vs. S-34 varied from 1.0008 to 1.0014.