Low Energy Ion Irradiation Of Materials
Download Low Energy Ion Irradiation Of Materials full books in PDF, epub, and Kindle. Read online free Low Energy Ion Irradiation Of Materials ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Bernd Rauschenbach |
Publisher | : Springer Nature |
Total Pages | : 763 |
Release | : 2022-08-19 |
Genre | : Technology & Engineering |
ISBN | : 3030972771 |
This book provides a comprehensive introduction to all aspects of low-energy ion–solid interaction from basic principles to advanced applications in materials science. It features a balanced and insightful approach to the fundamentals of the low-energy ion–solid surface interaction, focusing on relevant topics such as interaction potentials, kinetics of binary collisions, ion range, radiation damages, and sputtering. Additionally, the book incorporates key updates reflecting the latest relevant results of modern research on topics such as topography evolution and thin-film deposition under ion bombardment, ion beam figuring and smoothing, generation of nanostructures, and ion beam-controlled glancing angle deposition. Filling a gap of almost 20 years of relevant research activity, this book offers a wealth of information and up-to-date results for graduate students, academic researchers, and industrial scientists working in these areas.
Author | : Hubert Gnaser |
Publisher | : Springer |
Total Pages | : 304 |
Release | : 2014-01-15 |
Genre | : |
ISBN | : 9783662147382 |
Author | : Devesh Kumar Avasthi |
Publisher | : Springer Science & Business Media |
Total Pages | : 292 |
Release | : 2011-05-24 |
Genre | : Science |
ISBN | : 9400712294 |
Ion beams have been used for decades for characterizing and analyzing materials. Now energetic ion beams are providing ways to modify the materials in unprecedented ways. This book highlights the emergence of high-energy swift heavy ions as a tool for tailoring the properties of materials with nanoscale structures. Swift heavy ions interact with materials by exciting/ionizing electrons without directly moving the atoms. This opens a new horizon towards the 'so-called' soft engineering. The book discusses the ion beam technology emerging from the non-equilibrium conditions and emphasizes the power of controlled irradiation to tailor the properties of various types of materials for specific needs.
Author | : Werner Wesch |
Publisher | : Springer |
Total Pages | : 547 |
Release | : 2016-07-14 |
Genre | : Science |
ISBN | : 3319335618 |
This book presents the method of ion beam modification of solids in realization, theory and applications in a comprehensive way. It provides a review of the physical basics of ion-solid interaction and on ion-beam induced structural modifications of solids. Ion beams are widely used to modify the physical properties of materials. A complete theory of ion stopping in matter and the calculation of the energy loss due to nuclear and electronic interactions are presented including the effect of ion channeling. To explain structural modifications due to high electronic excitations, different concepts are presented with special emphasis on the thermal spike model. Furthermore, general concepts of damage evolution as a function of ion mass, ion fluence, ion flux and temperature are described in detail and their limits and applicability are discussed. The effect of nuclear and electronic energy loss on structural modifications of solids such as damage formation, phase transitions and amorphization is reviewed for insulators and semiconductors. Finally some selected applications of ion beams are given.
Author | : Dietmar Fink |
Publisher | : Springer Science & Business Media |
Total Pages | : 410 |
Release | : 2013-03-14 |
Genre | : Technology & Engineering |
ISBN | : 3662073269 |
Presented in two parts, this first comprehensive overview addresses all aspects of energetic ion irradiation of polymers. Earlier publications and review articles concentrated on selected topics only. And the need for such a work has grown with the dramatic increase of research and applications, such as in photoresists, waveguides, and medical dosimetry, during the last decade. The first part, Fundamentals of Ion Irradiation of Polymers covers the physical, chemical and instrumental fundamentals; treats the specific irradiation mechanisms of low- and high-energy ions (including similarities and differences); and details the potential for future technological application. All the new findings are carefully analyzed and presented in a systematic way, while open questions are identified.
Author | : Michael Nastasi |
Publisher | : Cambridge University Press |
Total Pages | : 572 |
Release | : 1996-03-29 |
Genre | : Science |
ISBN | : 052137376X |
Comprehensive guide to an important materials science technique for students and researchers.
Author | : Bernd Rauschenbach |
Publisher | : |
Total Pages | : 0 |
Release | : 2022 |
Genre | : |
ISBN | : 9783030972783 |
This book provides a comprehensive introduction to all aspects of low-energy ion-solid interaction from basic principles to advanced applications in materials science. It features a balanced and insightful approach to the fundamentals of the low-energy ion-solid surface interaction, focusing on relevant topics such as interaction potentials, kinetics of binary collisions, ion range, radiation damages, and sputtering. Additionally, the book incorporates key updates reflecting the latest relevant results of modern research on topics such as topography evolution and thin-film deposition under ion bombardment, ion beam figuring and smoothing, generation of nanostructures, and ion beam-controlled glancing angle deposition. Filling a gap of almost 20 years of relevant research activity, this book offers a wealth of information and up-to-date results for graduate students, academic researchers, and industrial scientists working in these areas.
Author | : Yongqiang Wang |
Publisher | : MDPI |
Total Pages | : 196 |
Release | : 2020-12-28 |
Genre | : Science |
ISBN | : 303936362X |
The complexity of radiation damage effects in materials that are used in various irradiation environments stems from the fundamental particle–solid interactions and the subsequent damage recovery dynamics after the collision cascades, which involves multiple length and time scales. Adding to this complexity are the transmuted impurities that are unavoidable from accompanying nuclear processes. Helium is one such impurity that plays an important and unique role in controlling the microstructure and properties of materials used in fast fission reactors, plasma-facing and structural materials in fusion devices, spallation neutron target designs, actinides, tritium-containing materials, and nuclear waste. Their ultra-low solubility in virtually all solids forces He atoms to self-precipitate into small bubbles that become nucleation sites for further void growth under radiation-induced vacancy supersaturations, resulting in material swelling and high-temperature He embrittlement, as well as surface blistering under low-energy and high-flux He bombardment. This Special Issue, “Radiation Damage in Materials—Helium Effects”, contains review articles and full-length papers on new irradiation material research activities and novel material ideas using experimental and/or modeling approaches. These studies elucidate the interactions of helium with various extreme environments and tailored nanostructures, as well as their impact on microstructural evolution and material properties.
Author | : Mario Birkholz |
Publisher | : John Wiley & Sons |
Total Pages | : 378 |
Release | : 2006-05-12 |
Genre | : Technology & Engineering |
ISBN | : 3527607048 |
With contributions by Paul F. Fewster and Christoph Genzel While X-ray diffraction investigation of powders and polycrystalline matter was at the forefront of materials science in the 1960s and 70s, high-tech applications at the beginning of the 21st century are driven by the materials science of thin films. Very much an interdisciplinary field, chemists, biochemists, materials scientists, physicists and engineers all have a common interest in thin films and their manifold uses and applications. Grain size, porosity, density, preferred orientation and other properties are important to know: whether thin films fulfill their intended function depends crucially on their structure and morphology once a chemical composition has been chosen. Although their backgrounds differ greatly, all the involved specialists a profound understanding of how structural properties may be determined in order to perform their respective tasks in search of new and modern materials, coatings and functions. The author undertakes this in-depth introduction to the field of thin film X-ray characterization in a clear and precise manner.
Author | : GARY S. WAS |
Publisher | : Springer |
Total Pages | : 1014 |
Release | : 2016-07-08 |
Genre | : Technology & Engineering |
ISBN | : 1493934384 |
The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.