Low Dimensional Halide Perovskites
Download Low Dimensional Halide Perovskites full books in PDF, epub, and Kindle. Read online free Low Dimensional Halide Perovskites ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Yiqiang Zhan |
Publisher | : Elsevier |
Total Pages | : 512 |
Release | : 2022-11-29 |
Genre | : Technology & Engineering |
ISBN | : 0323885233 |
Low-Dimensional Halide Perovskites: Structure, Properties and Applications provides an in-depth look at halide perovskite materials and their applications. Chapters cover history, fundamentals, physiochemical and optoelectronic properties, synthesis and characterization of traditional and Pb-free halide perovskites. The book concludes with sections describing the different applications of halide perovskites for solar cells, light-emitting diodes and photo detectors, as well as the challenges faced in the industrialization of halide perovskite-based devices and forward-thinking prospects for further deployment. - Discusses the applications of halide perovskites according to their dimensionality - Includes a look at current challenges for the commercialization of halide perovskites, while also previewing some possible solutions - Presents alternative environmentally-friendly materials that can used to replace the current toxic materials-based halide perovskites
Author | : Aparna Thankappan |
Publisher | : Academic Press |
Total Pages | : 521 |
Release | : 2018-06-29 |
Genre | : Technology & Engineering |
ISBN | : 0128129166 |
Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation examines the emergence of perovskite photovoltaics, associated challenges and opportunities, and how to achieve broader development. Consolidating developments in perovskite photovoltaics, including recent progress solar cells, this text also highlights advances and the research necessary for sustaining energy. Addressing different photovoltaics fields with tailored content for what makes perovskite solar cells suitable, and including commercialization examples of large-scale perovskite solar technology. The book also contains a detailed analysis of the implementation and economic viability of perovskite solar cells, highlighting what photovoltaic devices need to be generated by low cost, non-toxic, earth abundant materials using environmentally scalable processes. This book is a valuable resource engineers, scientists and researchers, and all those who wish to broaden their knowledge on flexible perovskite solar cells. - Includes contributions by leading solar cell academics, industrialists, researchers and institutions across the globe - Addresses different photovoltaics fields with tailored content for what makes perovskite solar cells different - Provides commercialization examples of large-scale perovskite solar technology, giving users detailed analysis on the implementation, technical challenges and economic viability of perovskite solar cells
Author | : Tze-Chien Sum |
Publisher | : John Wiley & Sons |
Total Pages | : 312 |
Release | : 2019-03-25 |
Genre | : Technology & Engineering |
ISBN | : 3527341110 |
Real insight from leading experts in the field into the causes of the unique photovoltaic performance of perovskite solar cells, describing the fundamentals of perovskite materials and device architectures. The authors cover materials research and development, device fabrication and engineering methodologies, as well as current knowledge extending beyond perovskite photovoltaics, such as the novel spin physics and multiferroic properties of this family of materials. Aimed at a better and clearer understanding of the latest developments in the hybrid perovskite field, this is a must-have for material scientists, chemists, physicists and engineers entering or already working in this booming field.
Author | : Tsutomu Miyasaka |
Publisher | : John Wiley & Sons |
Total Pages | : 484 |
Release | : 2022-03-21 |
Genre | : Technology & Engineering |
ISBN | : 3527347488 |
Perovskite Photovoltaics and Optoelectronics Discover a one-of-a-kind treatment of perovskite photovoltaics In less than a decade, the photovoltaics of organic-inorganic halide perovskite materials has surpassed the efficiency of semiconductor compounds like CdTe and CIGS in solar cells. In Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications, distinguished engineer Dr. Tsutomu Miyasaka delivers a comprehensive exploration of foundational and advanced topics regarding halide perovskites. It summarizes the latest information and discussion in the field, from fundamental theory and materials to critical device applications. With contributions by top scientists working in the perovskite community, the accomplished editor has compiled a resource of central importance for researchers working on perovskite related materials and devices. This edited volume includes coverage of new materials and their commercial and market potential in areas like perovskite solar cells, perovskite light-emitting diodes (LEDs), and perovskite-based photodetectors. It also includes: A thorough introduction to halide perovskite materials, their synthesis, and dimension control Comprehensive explorations of the photovoltaics of halide perovskites and their historical background Practical discussions of solid-state photophysics and carrier transfer mechanisms in halide perovskite semiconductors In-depth examinations of multi-cation anion-based high efficiency perovskite solar cells Perfect for materials scientists, crystallization physicists, surface chemists, and solid-state physicists, Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications is also an indispensable resource for solid state chemists and device/electronics engineers.
Author | : Aline Ferreira |
Publisher | : John Wiley & Sons |
Total Pages | : 290 |
Release | : 2020-10-19 |
Genre | : Science |
ISBN | : 3527344314 |
Hybrid organic-inorganic perovskites (HOIPs) have attracted substantial interest due to their chemical variability, structural diversity and favorable physical properties the past decade. This materials class encompasses other important families such as formates, azides, dicyanamides, cyanides and dicyanometallates. The book summarizes the chemical variability and structural diversity of all known hybrid organic-inorganic perovskites subclasses including halides, azides, formates, dicyanamides, cyanides and dicyanometallates. It also presents a comprehensive account of their intriguing physical properties, including photovoltaic, optoelectronic, dielectric, magnetic, ferroelectric, ferroelastic and multiferroic properties. Moreover, the current challenges and future opportunities in this exciting field are also been discussed. This timely book shows the readers a complete landscape of hybrid organic-inorganic pervoskites and associated multifuctionalities.
Author | : Kenneth D. Karlin |
Publisher | : Wiley-Interscience |
Total Pages | : 616 |
Release | : 1999-03-05 |
Genre | : Science |
ISBN | : 9780471326236 |
Straight from the frontier of scientific investigation . . . Nowhere is creative scientific talent busier than in the world of inorganic chemistry. And the respected Progress in Inorganic Chemistry series has long served as an exciting showcase for new research in this area. With contributions from internationally renowned chemists, this latest volume reports the most recent advances in the field, providing a fascinating window on the emerging state of the science. "This series is distinguished not only by its scope and breadth, but also by the depth and quality of the reviews."-Journal of the American Chemical Society. "[This series] has won a deservedly honored place on the bookshelf of the chemist attempting to keep afloat in the torrent of original papers on inorganic chemistry."-Chemistry in Britain. CONTENTS OF VOLUME 48: * Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials (David B. Mitzi, IBM T. J. Watson Research Center, Yorktown Heights, New York). * Transition Metals in Polymeric ¯1 -Conjugated Organic Frameworks (Richard P. Kingsborough and Timothy M. Swager, Massachusetts Institute of Technology, Cambridge, Massachusetts). * The Transition Metal Coordination Chemistry of Hemilabile Ligands (Caroline S. Slone, Dana A. Weinberger, and Chad A. Mirkin, Northwestern University, Evanston, Illinois). * Organometallic Fluorides of the Main Group Metals Containing the C-M-F Fragment (Balaji R. Jagirdar, Eamonn F. Murphy, and Herbert W. Roesky, Universität Göttingen, Germany). * Coordination Complex Impregnated Molecular Sieves-Synthesis, Characterization, Reactivity, and Catalysis (Partha P. Paul, Southwest Research Institute, San Antonio, Texas). * Advances in Metal Boryl and Metal-Mediated B-X Activation Chemistry (Milton R. Smith III, Michigan State University, East Lansing, Michigan).
Author | : Kenneth D. Karlin |
Publisher | : John Wiley & Sons |
Total Pages | : 641 |
Release | : 2004-03-24 |
Genre | : Science |
ISBN | : 047146077X |
This series provides inorganic chemists and materials scientists with a forum for critical, authoritative evaluations of advances in every area of the discipline. Volume 50 continues to report recent advances with a significant, up-to-date selection of contributions on topics such as the following: Structural and mechanistic investigations in asymmetric copper; Catalyzed reactions; Phenoxyl radical complexes; Synthesis of large pore zeolites and molecular sieves; Inorganic nanoclusters with fullerene-like structure and nanotubes
Author | : He Tian |
Publisher | : BoD – Books on Demand |
Total Pages | : 192 |
Release | : 2020-06-10 |
Genre | : Technology & Engineering |
ISBN | : 1789850711 |
Perovskites have attracted great attention in the fields of energy storage, pollutant degradation as well as optoelectronic devices due to their excellent properties. This kind of material can be divided into two categories; inorganic perovskite represented by perovskite oxide and organic-inorganic hybrid perovskite, which have described the recent advancement separately in terms of catalysis and photoelectron applications. This book systematically illustrates the crystal structures, physic-chemical properties, fabrication process, and perovskite-related devices. In a word, perovskite has broad application prospects. However, the current challenges cannot be ignored, such as toxicity and stability.
Author | : Ye Zhou |
Publisher | : Springer Nature |
Total Pages | : 374 |
Release | : 2020-08-27 |
Genre | : Technology & Engineering |
ISBN | : 9811566372 |
This book addresses perovskite quantum dots, discussing their unique properties, synthesis, and applications in nanoscale optoelectronic and photonic devices, as well as the challenges and possible solutions in the context of device design and the prospects for commercial applications. It particularly focuses on the luminescent properties, which differ from those of the corresponding quantum dots materials, such as multicolor emission, fluorescence narrowing, and tunable and switchable emissions from doped nanostructures. The book first describes the characterization and fabrication of perovskite quantum dots. It also provides detailed methods for analyzing the electrical and optical properties, and demonstrates promising applications of perovskite quantum dots. Furthermore, it presents a series of optoelectronic and photonic devices based on functional perovskite quantum dots, and explains the incorporation of perovskite quantum dots in semiconductor devices and their effect of the performance. It also explores the challenges related to optoelectronic devices, as well as possible strategies to promote their commercialization. As such, this book is a valuable resource for graduate students and researchers in the field of solid-state materials and electronics wanting to gain a better understanding of the characteristics of quantum dots, and the fundamental optoelectronic properties and operation mechanisms of the latest perovskite quantum dot-based devices.
Author | : Shahzada Ahmad |
Publisher | : John Wiley & Sons |
Total Pages | : 580 |
Release | : 2022-03-14 |
Genre | : Technology & Engineering |
ISBN | : 3527347151 |
Presents a thorough overview of perovskite research, written by leaders in the field of photovoltaics The use of perovskite-structured materials to produce high-efficiency solar cells is a subject of growing interest for academic researchers and industry professionals alike. Due to their excellent light absorption, longevity, and charge-carrier properties, perovskite solar cells show great promise as a low-cost, industry-scalable alternative to conventional photovoltaic cells. Perovskite Solar Cells: Materials, Processes, and Devices provides an up-to-date overview of the current state of perovskite solar cell research. Addressing the key areas in the rapidly growing field, this comprehensive volume covers novel materials, advanced theory, modelling and simulation, device physics, new processes, and the critical issue of solar cell stability. Contributions by an international panel of researchers highlight both the opportunities and challenges related to perovskite solar cells while offering detailed insights on topics such as the photon recycling processes, interfacial properties, and charge transfer principles of perovskite-based devices. Examines new compositions, hole and electron transport materials, lead-free materials, and 2D and 3D materials Covers interface modelling techniques, methods for modelling in two and three dimensions, and developments beyond Shockley-Queisser Theory Discusses new fabrication processes such as slot-die coating, roll processing, and vacuum sublimation Describes the device physics of perovskite solar cells, including recombination kinetics and optical absorption Explores innovative approaches to increase the light conversion efficiency of photovoltaic cells Perovskite Solar Cells: Materials, Processes, and Devices is essential reading for all those in the photovoltaic community, including materials scientists, surface physicists, surface chemists, solid state physicists, solid state chemists, and electrical engineers.