Localization And Energy Transfer In Nonlinear Systems
Download Localization And Energy Transfer In Nonlinear Systems full books in PDF, epub, and Kindle. Read online free Localization And Energy Transfer In Nonlinear Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Robert Sinclair MacKay |
Publisher | : World Scientific |
Total Pages | : 372 |
Release | : 2003 |
Genre | : Mathematics |
ISBN | : 9789812704627 |
This conference was the third meeting organized in the framework of the European LOCNET project. The main topics discussed by this international research collaboration were localization by nonlinearity and spatial discreteness, and energy transfer (in crystals, biomolecules and Josephson arrays).
Author | : Alexander F. Vakakis |
Publisher | : Springer Science & Business Media |
Total Pages | : 1030 |
Release | : 2008-12-24 |
Genre | : Technology & Engineering |
ISBN | : 1402091303 |
This monograph evolved over a period of nine years from a series of papers and presentations addressing the subject of passive vibration control of mechanical s- tems subjected to broadband, transient inputs. The unifying theme is Targeted - ergy Transfer – TET, which represents a new and unique approach to the passive control problem, in which a strongly nonlinear, fully passive, local attachment, the Nonlinear Energy Sink – NES, is employed to drastically alter the dynamics of the primary system to which it is attached. The intrinsic capacity of the properly - signed NES to promote rapid localization of externally applied (narrowband) - bration or (broadband) shock energy to itself, where it can be captured and dis- pated, provides a powerful strategy for vibration control and the opens the pos- bility for a wide range of applications of TET, such as, vibration and shock i- lation, passive energy harvesting, aeroelastic instability (?utter) suppression, se- mic mitigation, vortex shedding control, enhanced reliability designs (for ex- ple in power grids) and others. The monograph is intended to provide a thorough explanation of the analytical, computational and experimental methods needed to formulate and study TET in mechanical and structural systems. Several prac- cal engineering applications are examined in detail, and experimental veri?cation and validation of the theoretical predictions are provided as well. The authors also suggest a number of possible future applications where application of TET seems promising. The authors are indebted to a number of sponsoring agencies.
Author | : Walter Lacarbonara |
Publisher | : Springer Nature |
Total Pages | : 570 |
Release | : 2020-01-29 |
Genre | : Science |
ISBN | : 3030347133 |
This first of three volumes from the inaugural NODYCON, held at the University of Rome, in February of 2019, presents papers devoted to Nonlinear Dynamics of Structures, Systems and Devices. The collection features both well-established streams of research as well as novel areas and emerging fields of investigation. Topics in Volume I include multi-scale dynamics: coexistence of multiple time/space scales, large system dynamics; dynamics of structures/industrial machines/equipment/facilities (e.g., cable transportation systems, suspension bridges, cranes, vehicles); nonlinear interactions: parametric vibrations with single/multi-frequency excitations, multiple external and autoparametric resonances in multi-dof systems; nonlinear system identification: parametric/nonparametric identification, data-driven identification; experimental dynamics: benchmark experiments, experimental methods, instrumentation techniques, measurements in harsh environments, experimental validation of nonlinear models; wave propagation, solitons, kinks, breathers; solution methods for pdes: Lie groups, Hirota’s method, perturbation methods, etc; nonlinear waves in media (granular materials, porous materials, materials with memory); composite structures: multi-layer, functionally graded, thermal loading; fluid/structure interaction; nonsmooth and retarded dynamics: systems with impacts, free play, stick-slip, friction hysteresis; nonlinear systems with time and/or space delays; stability of delay differential equations, differential-algebraic equations; space/time reduced-order modeling: enhanced discretization methods, center manifold reduction, nonlinear normal modes, normal forms; fractional-order systems; computational techniques: efficient algorithms, use of symbolic manipulators, integration of symbolic manipulation and numerical methods, use of parallel processors; and multibody dynamics: rigid and flexible multibody system dynamics, impact and contact mechanics, tire modeling, railroad vehicle dynamics, computational multibody dynamics.
Author | : Thierry Dauxois |
Publisher | : World Scientific |
Total Pages | : 428 |
Release | : 2004 |
Genre | : Science |
ISBN | : 9812794867 |
This book provides an introduction to localised excitations in spatially discrete systems, from the experimental, numerical and mathematical points of view. Also known as discrete breathers, nonlinear lattice excitations and intrinsic localised modes, these are spatially localised time periodic motions in networks of dynamical units. Examples of such networks are molecular crystals, biomolecules, and arrays of Josephson superconducting junctions. The book also addresses the formation of discrete breathers and their potential role in energy transfer in such systems. Contents: Computational Studies of Discrete Breathers; Vibrational Spectroscopy and Quantum Localization; Slow Manifolds; Localized Excitations in Josephson Arrays; Protein Functional Dynamics: Computational Approaches; Nonlinear Vibrational Spectroscopy: A Method to Study Vibrational Self-Trapping; Breathers in Biomolecules?; Statistical Physics of Localized Vibrations; Localization and Targeted Transfer of Atomic-Scale Nonlinear Excitations: Perspectives for Applications. Readership: Advanced graduate students and postdoctoral researchers in nonlinear dynamics.
Author | : Alexander F. Vakakis |
Publisher | : Springer Science & Business Media |
Total Pages | : 290 |
Release | : 2013-06-29 |
Genre | : Science |
ISBN | : 9401724520 |
The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia and curvature nonlin earities and the parametric excitation on the spatial distribution of the deflection is examined. The results are compared with those obtained by using a single-mode discretization. In the absence of linear viscous and quadratic damping, it is shown that there are nonlinear normal modes, as defined by Rosenberg, even in the presence of a principal parametric excitation. Furthermore, the nonlinear mode shape obtained with the direct approach is compared with that obtained with the discretization approach for some values of the excitation frequency. In the single-mode discretization, the spatial distribution of the deflection is assumed a priori to be given by the linear mode shape ¢n, which is parametrically excited, as Equation (41). Thus, the mode shape is not influenced by the nonlinear curvature and nonlinear damping. On the other hand, in the direct approach, the mode shape is not assumed a priori; the nonlinear effects modify the linear mode shape ¢n. Therefore, in the case of large-amplitude oscillations, the single-mode discretization may yield inaccurate mode shapes. References 1. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. v., Pilipchuk, V. N., and Zevin A. A., Nonnal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996.
Author | : Leonid I. Manevitch |
Publisher | : Springer |
Total Pages | : 448 |
Release | : 2017-07-25 |
Genre | : Technology & Engineering |
ISBN | : 9811046662 |
This book suggests a new common approach to the study of resonance energy transport based on the recently developed concept of Limiting Phase Trajectories (LPTs), presenting applications of the approach to significant nonlinear problems from different fields of physics and mechanics. In order to highlight the novelty and perspectives of the developed approach, it places the LPT concept in the context of dynamical phenomena related to the energy transfer problems and applies the theory to numerous problems of practical importance. This approach leads to the conclusion that strongly nonstationary resonance processes in nonlinear oscillator arrays and nanostructures are characterized either by maximum possible energy exchange between the clusters of oscillators (coherence domains) or by maximum energy transfer from an external source of energy to the chain. The trajectories corresponding to these processes are referred to as LPTs. The development and the use of the LPTs concept a re motivated by the fact that non-stationary processes in a broad variety of finite-dimensional physical models are beyond the well-known paradigm of nonlinear normal modes (NNMs), which is fully justified either for stationary processes or for nonstationary non-resonance processes described exactly or approximately by the combinations of the non-resonant normal modes. Thus, the role of LPTs in understanding and analyzing of intense resonance energy transfer is similar to the role of NNMs for the stationary processes. The book is a valuable resource for engineers needing to deal effectively with the problems arising in the fields of mechanical and physical applications, when the natural physical model is quite complicated. At the same time, the mathematical analysis means that it is of interest to researchers working on the theory and numerical investigation of nonlinear oscillations.
Author | : Oleg V. Gendelman |
Publisher | : Springer Science & Business Media |
Total Pages | : 310 |
Release | : 2011-01-04 |
Genre | : Technology & Engineering |
ISBN | : 3642153720 |
This book describes significant tractable models used in solid mechanics - classical models used in modern mechanics as well as new ones. The models are selected to illustrate the main ideas which allow scientists to describe complicated effects in a simple manner and to clarify basic notations of solid mechanics. A model is considered to be tractable if it is based on clear physical assumptions which allow the selection of significant effects and relatively simple mathematical formulations. The first part of the book briefly reviews classical tractable models for a simple description of complex effects developed from the 18th to the 20th century and widely used in modern mechanics. The second part describes systematically the new tractable models used today for the treatment of increasingly complex mechanical objects – from systems with two degrees of freedom to three-dimensional continuous objects.
Author | : Thierry Dauxois |
Publisher | : World Scientific |
Total Pages | : 428 |
Release | : 2004-02-09 |
Genre | : Science |
ISBN | : 9814483346 |
This book provides an introduction to localised excitations in spatially discrete systems, from the experimental, numerical and mathematical points of view. Also known as discrete breathers, nonlinear lattice excitations and intrinsic localised modes, these are spatially localised time periodic motions in networks of dynamical units. Examples of such networks are molecular crystals, biomolecules, and arrays of Josephson superconducting junctions. The book also addresses the formation of discrete breathers and their potential role in energy transfer in such systems.
Author | : Panayotis G. Kevrekidis |
Publisher | : Springer Nature |
Total Pages | : 389 |
Release | : 2020-05-29 |
Genre | : Science |
ISBN | : 3030449920 |
This book explores the impact of nonlinearity on a broad range of areas, including time-honored fields such as biology, geometry, and topology, but also modern ones such as quantum mechanics, networks, metamaterials and artificial intelligence. The concept of nonlinearity is a universal feature in mathematics, physics, chemistry and biology, and is used to characterize systems whose behavior does not amount to a superposition of simple building blocks, but rather features complex and often chaotic patterns and phenomena. Each chapter of the book features a synopsis that not only recaps the recent progress in each field but also charts the challenges that lie ahead. This interdisciplinary book presents contributions from a diverse group of experts from various fields to provide an overview of each field’s past, present and future. It will appeal to both beginners and seasoned researchers in nonlinear science, numerous areas of physics (optics, quantum physics, biophysics), and applied mathematics (ODEs, PDEs, dynamical systems, machine learning) as well as engineering.
Author | : Taco Visser |
Publisher | : Elsevier |
Total Pages | : 306 |
Release | : 2021-04-16 |
Genre | : Science |
ISBN | : 0323850928 |
Progress in Optics, Volume 66, highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an international board of authors. It contains five reviews of the latest developments in optics. - This volume covers medical imaging, physical optics, integrated optics, and quantum optics - Includes contributions from leading authorities in the field of optics - Presents timely, state-of-the-art reviews on advances in optics