Experimental Heat Transfer, Fluid Mechanics and Thermodynamics 1993

Experimental Heat Transfer, Fluid Mechanics and Thermodynamics 1993
Author: M.D. Kelleher
Publisher: Elsevier
Total Pages: 1002
Release: 2012-12-02
Genre: Technology & Engineering
ISBN: 044459860X

The papers contained in this volume reflect the ingenuity and originality of experimental work in the areas of fluid mechanics, heat transfer and thermodynamics. The contributors are drawn from 27 countries which indicates how well the worldwide scientific community is networked. The papers cover a broad spectrum from the experimental investigation of complex fundamental physical phenomena to the study of practical devices and applications. A uniform outline and method of presentation has been used for each paper.

Transport Phenomena In Thermal Control

Transport Phenomena In Thermal Control
Author: Guang-Jyh Hwang
Publisher: CRC Press
Total Pages: 822
Release: 1989-08-01
Genre: Science
ISBN: 9780891168881

A collection of research papers into transport phenomena in thermal control, closely related to several important aspects of cooling technology. Articles provide overviews of current advances and details of individual technologies including electronic and turbine cooling and Marangoni convection.

Proceedings Of The International Heat Transfer Conference

Proceedings Of The International Heat Transfer Conference
Author: Lee
Publisher: CRC Press
Total Pages: 696
Release: 1998-11-01
Genre: Science
ISBN: 9781560327974

This year's set of papers includes 23 Keynote Papers and 537 refereed General Papers, in seven volumes. Experts from around the world have combined to address the leading edge of research and practical innovations in convection, combustion, heat exchangers, two-phase flow, and much more. Whether one is involved in mechanical, chemical, nuclear, or energy engineering the quantity, international scope, and high quality of the contents make access to these volumes essential.

Experimental Methods in Heat Transfer and Fluid Mechanics

Experimental Methods in Heat Transfer and Fluid Mechanics
Author: Je-Chin Han
Publisher: CRC Press
Total Pages: 365
Release: 2020-05-20
Genre: Science
ISBN: 1000072169

Experimental Methods in Heat Transfer and Fluid Mechanics focuses on how to analyze and solve the classic heat transfer and fluid mechanics measurement problems in one book. This work serves the need of graduate students and researchers looking for advanced measurement techniques for thermal, flow, and heat transfer engineering applications. The text focuses on analyzing and solving classic heat transfer and fluid mechanics measurement problems, emphasizing fundamental principles, measurement techniques, data presentation, and uncertainty analysis. Overall, the text builds a strong and practical background for solving complex engineering heat transfer and fluid flow problems. Features Provides students with an understandable introduction to thermal-fluid measurement Covers heat transfer and fluid mechanics measurements from basic to advanced methods Explains and compares various thermal-fluid experimental and measurement techniques Uses a step-by-step approach to explaining key measurement principles Gives measurement procedures that readers can easily follow and apply in the lab

Transport Phenomena in Heat and Mass Transfer

Transport Phenomena in Heat and Mass Transfer
Author: J.A. Reizes
Publisher: Elsevier
Total Pages: 833
Release: 2012-12-02
Genre: Technology & Engineering
ISBN: 0444599797

Theoretical, numerical and experimental studies of transport phenomena in heat and mass transfer are reported in depth in this volume. Papers are presented which review and discuss the most recent developments in areas such as: Mass transfer; Cooling of electronic components; Phase change processes; Instrumentation techniques; Numerical methods; Heat transfer in rotating machinery; Hypersonic flows; and Industrial applications. Bringing together the experience of specialists in these fields, the volume will be of interest to researchers and practising engineers who wish to enhance their knowledge in these rapidly developing areas.

Gas Turbine Heat Transfer and Cooling Technology, Second Edition

Gas Turbine Heat Transfer and Cooling Technology, Second Edition
Author: Je-Chin Han
Publisher: CRC Press
Total Pages: 892
Release: 2012-11-27
Genre: Science
ISBN: 1439855684

A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.