Lithium Metal Stabilization For Next Generation Lithium Based Batteries From Fundamental Chemistry To Advanced Characterization And Effective Protection
Download Lithium Metal Stabilization For Next Generation Lithium Based Batteries From Fundamental Chemistry To Advanced Characterization And Effective Protection full books in PDF, epub, and Kindle. Read online free Lithium Metal Stabilization For Next Generation Lithium Based Batteries From Fundamental Chemistry To Advanced Characterization And Effective Protection ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Yu Yan |
Publisher | : OAE Publishing Inc. |
Total Pages | : 32 |
Release | : 2023-01-11 |
Genre | : Technology & Engineering |
ISBN | : |
Lithium (Li) metal-based rechargeable batteries hold significant promise to meet the ever-increasing demands for portable electronic devices, electric vehicles and grid-scale energy storage, making them the optimal alternatives for next-generation secondary batteries. Nevertheless, Li metal anodes currently suffer from major drawbacks, including safety concerns, capacity decay and lifespan degradation, which arise from uncontrollable dendrite growth, notorious side reactions and infinite volume variation, thereby limiting their current practical application. Numerous critical endeavors from different perspectives have been dedicated to developing highly stable Li metal anodes. Herein, a comprehensive overview of Li metal anodes regarding fundamental mechanisms, scientific challenges, characterization techniques, theoretical investigations and advanced strategies is systematically presented. First, the basic working principles of Li metal-based batteries are introduced. Specific attention is then paid to the fundamental understanding of and challenges facing Li metal anodes. Accordingly, advanced characterization approaches and theoretical computations are introduced to understand the fundamental mechanisms of dendrite growth and parasitic reactions. Recent key progress in Li anode protection is then comprehensively summarized and categorized to generate an overview of the respective superiorities and limitations of the various strategies. Furthermore, this review concludes the remaining obstacles and potential research directions for inspiring the innovation of Li metal anodes and endeavors to accomplish the practical application of next-generation Li-based batteries.
Author | : Lei Yang |
Publisher | : OAE Publishing Inc. |
Total Pages | : 32 |
Release | : 2023-10-08 |
Genre | : Technology & Engineering |
ISBN | : |
Potassium-ion batteries (PIBs) are considered as promising alternatives to lithium-ion batteries (LIBs) due to their abundant potassium resources, cost-effectiveness, and comparable electrochemical performance to LIBs. However, the practical application of PIBs is hindered by the slow dynamics and large volume expansion of anode materials. Owing to their unique morphology, rich pores, abundant active sites, and tunable composition, metal-organic framework (MOF)-derived carbon and its composites have been widely studied and developed as PIB anodes. In this review, the basic configuration, performance evaluation indicators, and energy storage mechanisms of PIBs were first introduced, followed by a comprehensive summary of the research progress in MOF-derived carbon and its composites, especially the design strategies and different types of composites. Moreover, the advances of in situ characterization techniques to understand the electrochemical mechanism during potassiation/depotassiation were also highlighted, which is crucial for the directional optimization of the electrochemical performance of PIBs. Finally, the challenges and development prospects of MOF-derived carbon and its composites for PIBs are prospected. It is envisioned that this review will guide and inspire more research efforts toward advanced MOF-derived PIB anode materials in the future.
Author | : Jiaxiang Liu |
Publisher | : OAE Publishing Inc. |
Total Pages | : 27 |
Release | : 2023-05-19 |
Genre | : Technology & Engineering |
ISBN | : |
The rapid development of electronic technology and energy industry promotes the increasing desire for energy storage systems with high energy density, thus calling for the exploration of lithium metal anode. However, the enormous challenges, such as uncontrollable lithium deposition, side reaction, infinite volume change and dendrite generation, hinders its application. To address these problems, the deposition behavior of lithium must be exactly controlled and the anode/electrolyte interface must be stabilized. The deposition of lithium is a multi-step process influenced by multi-physical fields, where nucleation is the key to final morphology. Hence, increasing investigations have focused on the employment of lithiophilic materials that can regulate lithium nucleation in recent years. The lithiophilic materials introduced into the deposition hosts or solid electrolyte interphases can regulate the nucleation overpotential and facilitate uniform deposition. However, the concept of lithiophilicity is still undefined and the mechanism is still unrevealed. In this review, the recent advances in the regulation mechanisms of lithiophilicity are discussed, and the applications of lithiophilic materials in hosts and protective interphases are summarized. The in-depth exploration of lithiophilic materials can enhance our understanding of the deposition behavior of lithium and pave the way for practical lithium metal batteries.
Author | : Rachid Yazami |
Publisher | : CRC Press |
Total Pages | : 464 |
Release | : 2013-10-08 |
Genre | : Science |
ISBN | : 9814316407 |
This book covers the most recent advances in the science and technology of nanostructured materials for lithium-ion application. With contributions from renowned scientists and technologists, the chapters discuss state-of-the-art research on nanostructured anode and cathode materials, some already used in commercial batteries and others still in development. They include nanostructured anode materials based on Si, Ge, Sn, and other metals and metal oxides together with cathode materials of olivine, the hexagonal and spinel crystal structures.
Author | : Arumugam Manthiram |
Publisher | : John Wiley & Sons |
Total Pages | : 275 |
Release | : 2002-01-03 |
Genre | : Technology & Engineering |
ISBN | : 1574981358 |
This new volume covers the latest developments in the field of electrochemistry. It addresses a variety of topics including new materials development, materials synthesis, processing, characterization, property measurements, structure-property relationships, and device performance. A broader view of various electrochemical energy conversion devices make this book a critical read for scientists and engineers working in related fields. Papers from the symposium at the 102nd Annual Meeting of The American Ceramic Society, April 29-May 3, 2000, Missouri and the 103rd Annual Meeting, April 22-25, 2001, Indiana.
Author | : Christian Julien |
Publisher | : Springer Science & Business Media |
Total Pages | : 658 |
Release | : 2000-10-31 |
Genre | : Technology & Engineering |
ISBN | : 9780792366508 |
A lithium-ion battery comprises essentially three components: two intercalation compounds as positive and negative electrodes, separated by an ionic-electronic electrolyte. Each component is discussed in sufficient detail to give the practising engineer an understanding of the subject, providing guidance on the selection of suitable materials in actual applications. Each topic covered is written by an expert, reflecting many years of experience in research and applications. Each topic is provided with an extensive list of references, allowing easy access to further information. Readership: Research students and engineers seeking an expert review. Graduate courses in electrical drives can also be designed around the book by selecting sections for discussion. The coverage and treatment make the book indispensable for the lithium battery community.
Author | : John T. Warner |
Publisher | : Elsevier |
Total Pages | : 472 |
Release | : 2024-05-14 |
Genre | : Technology & Engineering |
ISBN | : 0443138087 |
The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology,?Second Edition provides a clear and concise explanation of EV and Li-ion batteries for readers that are new to the field. The second edition expands and updates all topics covered in the original book, adding more details to all existing chapters and including major updates to align with all of the rapid changes the industry has experienced over the past few years. This handbook offers a layman's explanation of the history of vehicle electrification and battery technology, describing the various terminology and acronyms and explaining how to do simple calculations that can be used in determining basic battery sizing, capacity, voltage, and energy. By the end of this book the reader will have a solid understanding of the terminology around Li-ion batteries and be able to undertake simple battery calculations. The book is immensely useful to beginning and experienced engineers alike who are moving into the battery field. Li-ion batteries are one of the most unique systems in automobiles today in that they combine multiple engineering disciplines, yet most engineering programs focus on only a single engineering field. This book provides the reader with a reference to the history, terminology and design criteria needed to understand the Li-ion battery and to successfully lay out a new battery concept. Whether you are an electrical engineer, a mechanical engineer or a chemist, this book will help you better appreciate the inter-relationships between the various battery engineering fields that are required to understand the battery as an Energy Storage System. It gives great insights for readers ranging from engineers to sales, marketing, management, leadership, investors, and government officials. - Adds a brief history of battery technology and its evolution to current technologies? - Expands and updates the chemistry to include the latest types - Discusses thermal runaway and cascading failure mitigation technologies? - Expands and updates the descriptions of the battery module and pack components and systems?? - Adds description of the manufacturing processes for cells, modules, and packs? - Introduces and discusses new topics such as battery-as-a-service, cell to pack and cell to chassis designs, and wireless BMS?
Author | : Asian Development Bank |
Publisher | : Asian Development Bank |
Total Pages | : 123 |
Release | : 2018-12-01 |
Genre | : Technology & Engineering |
ISBN | : 9292614711 |
This handbook serves as a guide to deploying battery energy storage technologies, specifically for distributed energy resources and flexibility resources. Battery energy storage technology is the most promising, rapidly developed technology as it provides higher efficiency and ease of control. With energy transition through decarbonization and decentralization, energy storage plays a significant role to enhance grid efficiency by alleviating volatility from demand and supply. Energy storage also contributes to the grid integration of renewable energy and promotion of microgrid.
Author | : Reiner Korthauer |
Publisher | : Springer |
Total Pages | : 417 |
Release | : 2018-08-07 |
Genre | : Technology & Engineering |
ISBN | : 3662530716 |
The handbook focuses on a complete outline of lithium-ion batteries. Just before starting with an exposition of the fundamentals of this system, the book gives a short explanation of the newest cell generation. The most important elements are described as negative / positive electrode materials, electrolytes, seals and separators. The battery disconnect unit and the battery management system are important parts of modern lithium-ion batteries. An economical, faultless and efficient battery production is a must today and is represented with one chapter in the handbook. Cross-cutting issues like electrical, chemical, functional safety are further topics. Last but not least standards and transportation themes are the final chapters of the handbook. The different topics of the handbook provide a good knowledge base not only for those working daily on electrochemical energy storage, but also to scientists, engineers and students concerned in modern battery systems.
Author | : Jean-Marie Tarascon |
Publisher | : John Wiley & Sons |
Total Pages | : 96 |
Release | : 2015-02-23 |
Genre | : Science |
ISBN | : 1118998146 |
The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological advances as well as the challenges that must still be resolved in the field of electrochemical storage, taking into account sustainable development and the limited time available to us.