Drug Design

Drug Design
Author: Gerhard Klebe
Publisher: Springer
Total Pages: 0
Release: 2013-07-10
Genre: Medical
ISBN: 9783642179068

Unique work on structure-based drug design, covering multiple aspects of drug discovery and development. Fully colored, many images, computer animations of 3D structures (these only in electronic form). Makes the spatial aspects of interacting molecules clear to the reader, covers multiple applications and methods in drug design. Structures by mode of action, no therapeutic areas. Of high relevance for academia and industrial research. Focus on gene technology in drug design, omics-technologies computational methods experimental techniques of structure determination multiple examples on mode of action of current drugs, ADME-tox properties in drug development, QSAR methods, combinatorial chemistry, biologicals, ribosome, targeting protein-protein interfaces.

Structural Biology in Drug Discovery

Structural Biology in Drug Discovery
Author: Jean-Paul Renaud
Publisher: John Wiley & Sons
Total Pages: 1437
Release: 2020-01-09
Genre: Medical
ISBN: 1118900502

With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins

Activation of Viruses by Host Proteases

Activation of Viruses by Host Proteases
Author: Eva Böttcher-Friebertshäuser
Publisher: Springer
Total Pages: 337
Release: 2018-05-22
Genre: Medical
ISBN: 3319754742

This book will give an overview on viruses undergoing proteolytic activation through host proteases. The chapters will be organized in three themed parts, the first part describing respective viruses and their characteristics in detail. In the second part the molecular and cellular biology of the proteases involved as well as their physiological functions will be further explored. The third part will contain a chapter on protease inhibitors that are promising tools for antiviral therapy. This book will engage scholars in virology and medical microbiology as well as researchers with an interest in enzymology and protein structure and function relationship.

The Complement FactsBook

The Complement FactsBook
Author: Bernard J. Morley
Publisher: Academic Press
Total Pages: 244
Release: 2000
Genre: Medical
ISBN:

The complement system is a protein system that combines with antibodies to form a defense against bugs and viruses. This book contains entries on all its components, including C1q and lectins, serine proteases, and terminal pathway proteins.

Proteases in Physiology and Pathology

Proteases in Physiology and Pathology
Author: Sajal Chakraborti
Publisher: Springer
Total Pages: 619
Release: 2017-09-14
Genre: Medical
ISBN: 9811025134

Using a multidisciplinary approach, this book describes the biochemical mechanisms associated with dysregulation of proteases and the resulting pathophysiological consequences. It highlights the role and regulation of different types of proteases as well as their synthetic and endogenous inhibitors. The role of proteases was initially thought to be limited to general metabolic digestion. However, we now know that the role of protein breakdown is much more complex, and proteases have multiple functions: they are coupled to turnover and can affect protein composition, function and synthesis. In addition to eliminating abnormal proteins, breakdown has many modulatory functions, including activating and inactivating enzymes, modulating membrane function, altering receptor channel properties, affecting transcription and cell cycles and forming active peptides. The ubiquity of proteases in nature makes them an important target for drug development. This in-depth, comprehensive is a valuable resource for researchers involved in identifying new targets for drug development. With its multidisciplinary scope, it bridges the gap between fundamental and translational research in the biomedical and pharmaceutical industries, making it thought-provoking reading for scientists in the field.

Extracellular Targeting of Cell Signaling in Cancer

Extracellular Targeting of Cell Signaling in Cancer
Author: James W. Janetka
Publisher: John Wiley & Sons
Total Pages: 482
Release: 2018-07-23
Genre: Science
ISBN: 1119300185

International experts present innovative therapeutic strategies to treat cancer patients and prevent disease progression Extracellular Targeting of Cell Signaling in Cancer highlights innovative therapeutic strategies to treat cancer metastasis and prevent tumor progression. Currently, there are no drugs available to treat or prevent metastatic cancer other than non-selective, toxic chemotherapy. With contributions from an international panel of experts in the field, the book integrates diverse aspects of biochemistry, molecular biology, protein engineering, proteomics, cell biology, pharmacology, biophysics, structural biology, medicinal chemistry and drug development. A large class of proteins called kinases are enzymes required by cancer cells to grow, proliferate, and survive apoptosis (death) by the immune system. Two important kinases are MET and RON which are receptor tyrosine kinases (RTKs) that initiate cell signaling pathways outside the cell surface in response to extracellular ligands (growth factors.) Both kinases are oncogenes which are required by cancer cells to migrate away from the primary tumor, invade surrounding tissue and metastasize. MET and RON reside on both cancer cells and the support cells surrounding the tumor, called the microenvironment. MET and RON are activated by their particular ligands, the growth factors HGF and MSP, respectively. Blocking MET and RON kinase activation and downstream signaling is a promising therapeutic strategy for preventing tumor progression and metastasis. Written for cancer physicians and biologists as well as drug discovery and development teams in both industry and academia, this is the first book of its kind which explores novel approaches to inhibit MET and RON kinases other than traditional small molecule kinase inhibitors. These new strategies target key tumorigenic processes on the outside of the cell, such as growth factor activation by proteases. These unique strategies have promising potential as an improved alternative to kinase inhibitors, chemotherapy, or radiation treatment.

Protein-protein Recognition

Protein-protein Recognition
Author: Colin Kleanthous
Publisher: Frontiers in Molecular Biology
Total Pages: 370
Release: 2000
Genre: Carrier proteins
ISBN: 9780199637607

The purpose of Protein-Protein Recognition is to bring together concepts and systems pertaining to protein-protein interactions in a single unifying volume. In the light of the information from the genome sequencing projects and the increase in structural information it is an opportune time totry to make generalizations about how and why proteins form complexes with each other. The emphasis of the book is on heteromeric complexes (complexes in which each of the components can exist in an unbound state) and will use well-studied model systems to explain the processes of formingcomplexes. After an introductory section on the kinetics, thermodynamics, analysis, and classification of protein-protein interactions, weak, intermediate, and high affinity complexes are dealt with in turn. Weak affinity complexes are represented by electron transfer proteins and integrincomplexes. Anti-lysozyme antibodies, the MHC proteins and their interactions with T-cell receptors, and the protein interactions of eukaryotic signal transduction are the systems used to explain complexes with intermediate affinities. Finally, tight binding complexes are represented by theinteraction of protein inhibitors with serine proteases and by nuclease inhibitor complexes. Throughout the chapters common themes are the technologies which have had the greatest impact, how specificity is determined, how complexes are stabilized, and medical and industrial applications.

Protein-Ligand Interactions

Protein-Ligand Interactions
Author: Holger Gohlke
Publisher: John Wiley & Sons
Total Pages: 361
Release: 2012-05-21
Genre: Medical
ISBN: 3527329668

Innovative and forward-looking, this volume focuses on recent achievements in this rapidly progressing field and looks at future potential for development. The first part provides a basic understanding of the factors governing protein-ligand interactions, followed by a comparison of key experimental methods (calorimetry, surface plasmon resonance, NMR) used in generating interaction data. The second half of the book is devoted to insilico methods of modeling and predicting molecular recognition and binding, ranging from first principles-based to approximate ones. Here, as elsewhere in the book, emphasis is placed on novel approaches and recent improvements to established methods. The final part looks at unresolved challenges, and the strategies to address them. With the content relevant for all drug classes and therapeutic fields, this is an inspiring and often-consulted guide to the complexity of protein-ligand interaction modeling and analysis for both novices and experts.