Linear Optimization And Approximation
Download Linear Optimization And Approximation full books in PDF, epub, and Kindle. Read online free Linear Optimization And Approximation ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Pablo Pedregal |
Publisher | : Springer |
Total Pages | : 261 |
Release | : 2017-09-07 |
Genre | : Mathematics |
ISBN | : 3319648438 |
This book provides a basic, initial resource, introducing science and engineering students to the field of optimization. It covers three main areas: mathematical programming, calculus of variations and optimal control, highlighting the ideas and concepts and offering insights into the importance of optimality conditions in each area. It also systematically presents affordable approximation methods. Exercises at various levels have been included to support the learning process.
Author | : Ioannis C. Demetriou |
Publisher | : Springer |
Total Pages | : 244 |
Release | : 2019-05-10 |
Genre | : Mathematics |
ISBN | : 3030127672 |
This book focuses on the development of approximation-related algorithms and their relevant applications. Individual contributions are written by leading experts and reflect emerging directions and connections in data approximation and optimization. Chapters discuss state of the art topics with highly relevant applications throughout science, engineering, technology and social sciences. Academics, researchers, data science practitioners, business analysts, social sciences investigators and graduate students will find the number of illustrations, applications, and examples provided useful. This volume is based on the conference Approximation and Optimization: Algorithms, Complexity, and Applications, which was held in the National and Kapodistrian University of Athens, Greece, June 29–30, 2017. The mix of survey and research content includes topics in approximations to discrete noisy data; binary sequences; design of networks and energy systems; fuzzy control; large scale optimization; noisy data; data-dependent approximation; networked control systems; machine learning ; optimal design; no free lunch theorem; non-linearly constrained optimization; spectroscopy.
Author | : Stephen P. Boyd |
Publisher | : Cambridge University Press |
Total Pages | : 744 |
Release | : 2004-03-08 |
Genre | : Business & Economics |
ISBN | : 9780521833783 |
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Author | : Klaus Glashoff |
Publisher | : |
Total Pages | : 216 |
Release | : 1983 |
Genre | : Duality theory (Mathematics). |
ISBN | : |
Author | : Peter I. Kogut |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 352 |
Release | : 2019-12-02 |
Genre | : Mathematics |
ISBN | : 3110668521 |
The monograph addresses some problems particularly with regard to ill-posedness of boundary value problems and problems where we cannot expect to have uniqueness of their solutions in the standard functional spaces. Bringing original and previous results together, it tackles computational challenges by exploiting methods of approximation and asymptotic analysis and harnessing differences between optimal control problems and their underlying PDEs
Author | : Bernd Gärtner |
Publisher | : Springer Science & Business Media |
Total Pages | : 253 |
Release | : 2012-01-10 |
Genre | : Mathematics |
ISBN | : 3642220150 |
Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency - both in theory and practice. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material. There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms. This book follows the “semidefinite side” of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.
Author | : Lap Chi Lau |
Publisher | : Cambridge University Press |
Total Pages | : 255 |
Release | : 2011-04-18 |
Genre | : Computers |
ISBN | : 1139499394 |
With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms.
Author | : Michael C. Ferris |
Publisher | : SIAM |
Total Pages | : 270 |
Release | : 2007-01-01 |
Genre | : Mathematics |
ISBN | : 0898716438 |
A self-contained introduction to linear programming using MATLAB® software to elucidate the development of algorithms and theory. Exercises are included in each chapter, and additional information is provided in two appendices and an accompanying Web site. Only a basic knowledge of linear algebra and calculus is required.
Author | : Michael H. Veatch |
Publisher | : John Wiley & Sons |
Total Pages | : 384 |
Release | : 2020-12-16 |
Genre | : Mathematics |
ISBN | : 1119664020 |
Discover the practical impacts of current methods of optimization with this approachable, one-stop resource Linear and Convex Optimization: A Mathematical Approach delivers a concise and unified treatment of optimization with a focus on developing insights in problem structure, modeling, and algorithms. Convex optimization problems are covered in detail because of their many applications and the fast algorithms that have been developed to solve them. Experienced researcher and undergraduate teacher Mike Veatch presents the main algorithms used in linear, integer, and convex optimization in a mathematical style with an emphasis on what makes a class of problems practically solvable and developing insight into algorithms geometrically. Principles of algorithm design and the speed of algorithms are discussed in detail, requiring no background in algorithms. The book offers a breadth of recent applications to demonstrate the many areas in which optimization is successfully and frequently used, while the process of formulating optimization problems is addressed throughout. Linear and Convex Optimization contains a wide variety of features, including: Coverage of current methods in optimization in a style and level that remains appealing and accessible for mathematically trained undergraduates Enhanced insights into a few algorithms, instead of presenting many algorithms in cursory fashion An emphasis on the formulation of large, data-driven optimization problems Inclusion of linear, integer, and convex optimization, covering many practically solvable problems using algorithms that share many of the same concepts Presentation of a broad range of applications to fields like online marketing, disaster response, humanitarian development, public sector planning, health delivery, manufacturing, and supply chain management Ideal for upper level undergraduate mathematics majors with an interest in practical applications of mathematics, this book will also appeal to business, economics, computer science, and operations research majors with at least two years of mathematics training.
Author | : Giorgio Ausiello |
Publisher | : Springer Science & Business Media |
Total Pages | : 536 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 3642584128 |
This book documents the state of the art in combinatorial optimization, presenting approximate solutions of virtually all relevant classes of NP-hard optimization problems. The wealth of problems, algorithms, results, and techniques make it an indispensible source of reference for professionals. The text smoothly integrates numerous illustrations, examples, and exercises.