Linear Multivariable Control

Linear Multivariable Control
Author: W. M. Wonham
Publisher: Springer Science & Business Media
Total Pages: 357
Release: 2013-11-21
Genre: Science
ISBN: 3662226731

In writing this monograph my objective is to present arecent, 'geometrie' approach to the structural synthesis of multivariable control systems that are linear, time-invariant, and of finite dynamic order. The book is addressed to graduate students specializing in control, to engineering scientists engaged in control systems research and development, and to mathematicians with some previous acquaintance with control problems. The label 'geometrie' is applied for several reasons. First and obviously, the setting is linear state space and the mathematics chiefly linear algebra in abstract (geometrie) style. The basic ideas are the familiar system concepts of controllability and observability, thought of as geometrie properties of distinguished state subspaces. Indeed, the geometry was first brought in out of revulsion against the orgy of matrix manipulation which linear control theory mainly consisted of, not so long ago. But secondlyand of greater interest, the geometrie setting rather quickly suggested new methods of attacking synthesis which have proved to be intuitive and economical; they are also easily reduced to matrix arith metic as soonas you want to compute. The essence of the 'geometrie' approach is just this: instead of looking directly for a feedback laW (say u = Fx) which would solve your synthesis problem if a solution exists, first characterize solvability as a verifiable property of some constructible state subspace, say J. Then, if all is weIl, you may calculate F from J quite easily.

Linear Multivariable Control Systems

Linear Multivariable Control Systems
Author: Shankar P. Bhattacharyya
Publisher: Cambridge University Press
Total Pages: 697
Release: 2022-01-13
Genre: Mathematics
ISBN: 1108841686

A graduate text providing broad coverage of linear multivariable control systems, including several new results and recent approaches.

Mono- and Multivariable Control and Estimation

Mono- and Multivariable Control and Estimation
Author: Eric Ostertag
Publisher: Springer Science & Business Media
Total Pages: 359
Release: 2011-01-03
Genre: Technology & Engineering
ISBN: 3642137342

This book presents the various design methods of a state-feedback control law and of an observer. The considered systems are of continuous-time and of discrete-time nature, monovariable or multivariable, the last ones being of main consideration. Three different approaches are described: • Linear design methods, with an emphasis on decoupling strategies, and a general formula for multivariable controller or observer design; • Quadratic optimization methods: Linear Quadratic Control (LQC), optimal Kalman filtering, Linear Quadratic Gaussian (LQG) control; • Linear matrix inequalities (LMIs) to solve linear and quadratic problems. The duality between control and observation is taken to advantage and extended up to the mathematical domain. A large number of exercises, all given with their detailed solutions, mostly obtained with MATLAB, reinforce and exemplify the practical orientation of this book. The programs, created by the author for their solving, are available on the Internet sites of Springer and of MathWorks for downloading. This book is targeted at students of Engineering Schools or Universities, at the Master’s level, at engineers desiring to design and implement innovative control methods, and at researchers.

Linear Multivariable Systems

Linear Multivariable Systems
Author: W. A. Wolovich
Publisher: Springer Science & Business Media
Total Pages: 369
Release: 2012-12-06
Genre: Science
ISBN: 1461263921

This text was developed over a three year period of time (1971- 1973) from a variety of notes and references used in the presentation of a senior/first year graduate level course in the Division of En gineering at Brown University titled Linear System Theory. The in tent of the course was not only to introduce students to the more modern, state-space approach to multivariable control system analysis and design, as opposed to the classical, frequency domain approach, but also to draw analogies between the two approaches whenever and wherever possible. It is therefore felt that the material presented will have broader appeal to practicing engineers than a text devoted exclusively to the state-space approach. It was assumed that students taking the course had also taken, as a prerequisite, an undergraduate course in classical control theory and also were familiar with certain standard linear algebraic notions as well as the theory of ordinary differential equations, although a substantial effort was expended to make the material as self-contained as possible. In particular, Chapter 2 is employed to familiarize the reader with a good deal of the mathematical material employed through out the remainder of the text. Chapters 3 through 5 were drawn, in part, from a number of contemporary state-space and matrix algebraic references, as well as some recent research of the author, especially those portions which deal with polynomial matrices and the differential operator approach.

Multivariable Control Systems

Multivariable Control Systems
Author: P. Albertos Pérez
Publisher: Springer Science & Business Media
Total Pages: 357
Release: 2004
Genre: Language Arts & Disciplines
ISBN: 1852337389

Multivariable Control Systems focuses on control design with continual references to the practical aspects of implementation. While the concepts of multivariable control are justified, the book emphasises the need to maintain student interest and motivation over exhaustive mathematical proof. Tools of analysis and representation are always developed as methods for achieving a final control system design and evaluation. Features: • design implementation laid out using extensive reference to MATLAB®; • combined consideration of systems (plant) and signals (mainly disturbances); • step-by-step approach from the objectives of multivariable control to the solution of complete design problems. Multivariable Control Systems is an ideal text for graduate students or for final-year undergraduates looking for more depth than provided by introductory textbooks. It will also interest the control engineer practising in industry and seeking to implement robust or multivariable control solutions to plant problems.

Linear Multivariable Control

Linear Multivariable Control
Author: A. I. G. Vardulakis
Publisher: John Wiley & Sons
Total Pages: 392
Release: 1991
Genre: Mathematics
ISBN:

Details the basic theory of polynomial and fractional representation methods for algebraic analysis and synthesis of linear multivariable control systems. It also serves as a self-contained treatise of the mathematical theory so that results and techniques of the ``state space approaches'' for regular and singular systems appear as special cases of a general theory covering the wider class of PMDs of linear systems. Among the topics covered are: real rational vector spaces and rational matrices, pole and zero structure of rational matrices at infinity, proper and omega stable rational fuctions and matrices.

Multivariable Feedback Control

Multivariable Feedback Control
Author: Sigurd Skogestad
Publisher: John Wiley & Sons
Total Pages: 594
Release: 2005-11-04
Genre: Science
ISBN: 047001167X

Multivariable Feedback Control: Analysis and Design, Second Edition presents a rigorous, yet easily readable, introduction to the analysis and design of robust multivariable control systems. Focusing on practical feedback control and not on system theory in general, this book provides the reader with insights into the opportunities and limitations of feedback control. Taking into account the latest developments in the field, this fully revised and updated second edition: * features a new chapter devoted to the use of linear matrix inequalities (LMIs); * presents current results on fundamental performance limitations introduced by RHP-poles and RHP-zeros; * introduces updated material on the selection of controlled variables and self-optimizing control; * provides simple IMC tuning rules for PID control; * covers additional material including unstable plants, the feedback amplifier, the lower gain margin and a clear strategy for incorporating integral action into LQG control; * includes numerous worked examples, exercises and case studies, which make frequent use of Matlab and the new Robust Control toolbox. Multivariable Feedback Control: Analysis and Design, Second Edition is an excellent resource for advanced undergraduate and graduate courses studying multivariable control. It is also an invaluable tool for engineers who want to understand multivariable control, its limitations, and how it can be applied in practice. The analysis techniques and the material on control structure design should prove very useful in the new emerging area of systems biology. Reviews of the first edition: "Being rich in insights and practical tips on controller design, the book should also prove to be very beneficial to industrial control engineers, both as a reference book and as an educational tool." Applied Mechanics Reviews "In summary, this book can be strongly recommended not only as a basic text in multivariable control techniques for graduate and undergraduate students, but also as a valuable source of information for control engineers." International Journal of Adaptive Control and Signal Processing

Control of Linear Parameter Varying Systems with Applications

Control of Linear Parameter Varying Systems with Applications
Author: Javad Mohammadpour
Publisher: Springer Science & Business Media
Total Pages: 554
Release: 2012-03-08
Genre: Technology & Engineering
ISBN: 146141833X

Control of Linear Parameter Varying Systems compiles state-of-the-art contributions on novel analytical and computational methods for addressing system identification, model reduction, performance analysis and feedback control design and addresses address theoretical developments, novel computational approaches and illustrative applications to various fields. Part I discusses modeling and system identification of linear parameter varying systems, Part II covers the importance of analysis and control design when working with linear parameter varying systems (LPVS) , Finally, Part III presents an applications based approach to linear parameter varying systems, including modeling of a turbocharged diesel engines, Multivariable control of wind turbines, modeling and control of aircraft engines, control of an autonomous underwater vehicles and analysis and synthesis of re-entry vehicles.

Linear and Nonlinear Multivariable Feedback Control

Linear and Nonlinear Multivariable Feedback Control
Author: Oleg Gasparyan
Publisher: John Wiley & Sons
Total Pages: 355
Release: 2008-03-03
Genre: Science
ISBN: 0470061049

Automatic feedback control systems play crucial roles in many fields, including manufacturing industries, communications, naval and space systems. At its simplest, a control system represents a feedback loop in which the difference between the ideal (input) and actual (output) signals is used to modify the behaviour of the system. Control systems are in our homes, computers, cars and toys. Basic control principles can also be found in areas such as medicine, biology and economics, where feedback mechanisms are ever present. Linear and Nonlinear Multivariable Feedback Control presents a highly original, unified control theory of both linear and nonlinear multivariable (also known as multi-input multi-output (MIMO)) feedback systems as a straightforward extension of classical control theory. It shows how the classical engineering methods look in the multidimensional case and how practising engineers or researchers can apply them to the analysis and design of linear and nonlinear MIMO systems. This comprehensive book: uses a fresh approach, bridging the gap between classical and modern, linear and nonlinear multivariable control theories; includes vital nonlinear topics such as limit cycle prediction and forced oscillations analysis on the basis of the describing function method and absolute stability analysis by means of the primary classical frequency-domain criteria (e.g. Popov, circle or parabolic criteria); reinforces the main themes with practical worked examples solved by a special MATLAB-based graphical user interface, as well as with problems, questions and exercises on an accompanying website. The approaches presented in Linear and Nonlinear Multivariable Feedback Control form an invaluable resource for graduate and undergraduate students studying multivariable feedback control as well as those studying classical or modern control theories. The book also provides a useful reference for researchers, experts and practitioners working in industry

Linear Multivariable Control

Linear Multivariable Control
Author: W.M. Wonham
Publisher: Springer Science & Business Media
Total Pages: 349
Release: 2012-12-06
Genre: Science
ISBN: 1461210828

In wntmg this monograph my aim has been to present a "geometric" approach to the structural synthesis of multivariable control systems that are linear, time-invariant and of finite dynamic order. The book is ad dressed to graduate students specializing in control, to engineering scientists involved in control systems research and development, and to mathemati cians interested in systems control theory. The label "geometric" in the title is applied for several reasons. First and obviously, the setting is linear state space and the mathematics chiefly linear algebra in abstract (geometric) style. The basic ideas are the familiar system concepts of controllability and observability, thought of as geometric prop erties of distinguished state subspaces. Indeed, the geometry was first brought in out of revulsion against the orgy of matrix manipulation which linear control theory mainly consisted of, around fifteen years ago. But secondly and of greater interest, the geometric setting rather quickly sug gested new methods of attacking synthesis which have proved to be intuitive and economical; they are also easily reduced to matrix arithmetic as soon as you want to compute. The essence of the "geometric" approach is just this: instead of looking directly for a feedback law (say u = Fx) which would solve your synthesis problem if a solution exists, first characterize solvability as a verifiable property of some constructible state subspace, say Y. Then, if all is well, you may calculate F from Y quite easily.