Linear and Nonlinear Evolution Equations

Linear and Nonlinear Evolution Equations
Author: Gaston M. N'Guérékata
Publisher:
Total Pages: 0
Release: 2012
Genre: Evolution equations
ISBN: 9781616684259

This book presents and discusses current research in the study of linear and non-linear evolution equations. Topics discussed include semi-linear abstract differential equations; singular solutions of a semi-linear elliptic equation on non-smooth domains; non-linear parabolic systems with non-linear boundaries; the decay of solutions of a non-linear BBM-Burgers System and critical curves for a degenerate parabolic system with non-linear boundary conditions.

Harmonic Analysis Method For Nonlinear Evolution Equations, I

Harmonic Analysis Method For Nonlinear Evolution Equations, I
Author: Baoxiang Wang
Publisher: World Scientific
Total Pages: 298
Release: 2011-08-10
Genre: Mathematics
ISBN: 9814458392

This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrödinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods.This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students.

Evolution Equations and Approximations

Evolution Equations and Approximations
Author: Kazufumi Ito
Publisher: World Scientific
Total Pages: 524
Release: 2002
Genre: Science
ISBN: 9789812380265

Annotation Ito (North Carolina State U.) and Kappel (U. of Graz, Austria) offer a unified presentation of the general approach for well-posedness results using abstract evolution equations, drawing from and modifying the work of K. and Y. Kobayashi and S. Oharu. They also explore abstract approximation results for evolution equations. Their work is not a textbook, but they explain how instructors can use various sections, or combinations of them, as a foundation for a range of courses. Annotation copyrighted by Book News, Inc., Portland, OR

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations
Author: Peter J. Olver
Publisher: Springer Science & Business Media
Total Pages: 636
Release: 2013-11-08
Genre: Mathematics
ISBN: 3319020994

This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.

Inverse Problems and Nonlinear Evolution Equations

Inverse Problems and Nonlinear Evolution Equations
Author: Alexander L. Sakhnovich
Publisher: Walter de Gruyter
Total Pages: 356
Release: 2013-07-31
Genre: Mathematics
ISBN: 3110258617

This book is based on the method of operator identities and related theory of S-nodes, both developed by Lev Sakhnovich. The notion of the transfer matrix function generated by the S-node plays an essential role. The authors present fundamental solutions of various important systems of differential equations using the transfer matrix function, that is, either directly in the form of the transfer matrix function or via the representation in this form of the corresponding Darboux matrix, when Bäcklund–Darboux transformations and explicit solutions are considered. The transfer matrix function representation of the fundamental solution yields solution of an inverse problem, namely, the problem to recover system from its Weyl function. Weyl theories of selfadjoint and skew-selfadjoint Dirac systems, related canonical systems, discrete Dirac systems, system auxiliary to the N-wave equation and a system rationally depending on the spectral parameter are obtained in this way. The results on direct and inverse problems are applied in turn to the study of the initial-boundary value problems for integrable (nonlinear) wave equations via inverse spectral transformation method. Evolution of the Weyl function and solution of the initial-boundary value problem in a semi-strip are derived for many important nonlinear equations. Some uniqueness and global existence results are also proved in detail using evolution formulas. The reading of the book requires only some basic knowledge of linear algebra, calculus and operator theory from the standard university courses.

Nonlinear Evolution Equations

Nonlinear Evolution Equations
Author: Songmu Zheng
Publisher: CRC Press
Total Pages: 303
Release: 2004-07-08
Genre: Mathematics
ISBN: 0203492226

Nonlinear evolution equations arise in many fields of sciences including physics, mechanics, and material science. This book introduces some important methods for dealing with these equations and explains clearly and concisely a wide range of relevant theories and techniques. These include the semigroup method, the compactness and monotone operator

Solitons, Nonlinear Evolution Equations and Inverse Scattering

Solitons, Nonlinear Evolution Equations and Inverse Scattering
Author: Mark J. Ablowitz
Publisher: Cambridge University Press
Total Pages: 532
Release: 1991-12-12
Genre: Mathematics
ISBN: 0521387302

This book will be a valuable addition to the growing literature in the area and essential reading for all researchers in the field of soliton theory.

Beyond Partial Differential Equations

Beyond Partial Differential Equations
Author: Horst Reinhard Beyer
Publisher: Springer
Total Pages: 291
Release: 2007-04-10
Genre: Mathematics
ISBN: 3540711295

This book introduces the treatment of linear and nonlinear (quasi-linear) abstract evolution equations by methods from the theory of strongly continuous semigroups. The theoretical part is accessible to graduate students with basic knowledge in functional analysis, with only some examples requiring more specialized knowledge from the spectral theory of linear, self-adjoint operators in Hilbert spaces. Emphasis is placed on equations of the hyperbolic type which are less often treated in the literature.

Nonlinear Evolution Equations

Nonlinear Evolution Equations
Author: Michael G. Crandall
Publisher:
Total Pages: 282
Release: 1978
Genre: Mathematics
ISBN:

This volume constitutes the proceedings of the Symposium on Nonlinear Evolution Equations held in Madison, October 17-19, 1977. The thirteen papers presented herein follow the order of the corresponding lectures. This symposium was sponsored by the Army Research Office, the National Science Foundation, and the Office of Naval Research.