Linear Algebra Markov Chains And Queueing Models
Download Linear Algebra Markov Chains And Queueing Models full books in PDF, epub, and Kindle. Read online free Linear Algebra Markov Chains And Queueing Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Carl D. Meyer |
Publisher | : Springer Science & Business Media |
Total Pages | : 300 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 146138351X |
This IMA Volume in Mathematics and its Applications LINEAR ALGEBRA, MARKOV CHAINS, AND QUEUEING MODELS is based on the proceedings of a workshop which was an integral part of the 1991-92 IMA program on "Applied Linear Algebra". We thank Carl Meyer and R.J. Plemmons for editing the proceedings. We also take this opportunity to thank the National Science Founda tion, whose financial support made the workshop possible. A vner Friedman Willard Miller, Jr. xi PREFACE This volume contains some of the lectures given at the workshop Lin ear Algebra, Markov Chains, and Queueing Models held January 13-17, 1992, as part of the Year of Applied Linear Algebra at the Institute for Mathematics and its Applications. Markov chains and queueing models play an increasingly important role in the understanding of complex systems such as computer, communi cation, and transportation systems. Linear algebra is an indispensable tool in such research, and this volume collects a selection of important papers in this area. The articles contained herein are representative of the underlying purpose of the workshop, which was to bring together practitioners and re searchers from the areas of linear algebra, numerical analysis, and queueing theory who share a common interest of analyzing and solving finite state Markov chains. The papers in this volume are grouped into three major categories-perturbation theory and error analysis, iterative methods, and applications regarding queueing models.
Author | : William J. Stewart |
Publisher | : Princeton University Press |
Total Pages | : 777 |
Release | : 2009-07-06 |
Genre | : Mathematics |
ISBN | : 1400832810 |
Probability, Markov Chains, Queues, and Simulation provides a modern and authoritative treatment of the mathematical processes that underlie performance modeling. The detailed explanations of mathematical derivations and numerous illustrative examples make this textbook readily accessible to graduate and advanced undergraduate students taking courses in which stochastic processes play a fundamental role. The textbook is relevant to a wide variety of fields, including computer science, engineering, operations research, statistics, and mathematics. The textbook looks at the fundamentals of probability theory, from the basic concepts of set-based probability, through probability distributions, to bounds, limit theorems, and the laws of large numbers. Discrete and continuous-time Markov chains are analyzed from a theoretical and computational point of view. Topics include the Chapman-Kolmogorov equations; irreducibility; the potential, fundamental, and reachability matrices; random walk problems; reversibility; renewal processes; and the numerical computation of stationary and transient distributions. The M/M/1 queue and its extensions to more general birth-death processes are analyzed in detail, as are queues with phase-type arrival and service processes. The M/G/1 and G/M/1 queues are solved using embedded Markov chains; the busy period, residual service time, and priority scheduling are treated. Open and closed queueing networks are analyzed. The final part of the book addresses the mathematical basis of simulation. Each chapter of the textbook concludes with an extensive set of exercises. An instructor's solution manual, in which all exercises are completely worked out, is also available (to professors only). Numerous examples illuminate the mathematical theories Carefully detailed explanations of mathematical derivations guarantee a valuable pedagogical approach Each chapter concludes with an extensive set of exercises
Author | : Carl D Meyer |
Publisher | : |
Total Pages | : 316 |
Release | : 1993-09-10 |
Genre | : |
ISBN | : 9781461383529 |
Author | : Carl Dean Meyer |
Publisher | : |
Total Pages | : 320 |
Release | : 1993 |
Genre | : Mathematics |
ISBN | : |
Author | : Hal Caswell |
Publisher | : Springer |
Total Pages | : 308 |
Release | : 2019-04-02 |
Genre | : Social Science |
ISBN | : 3030105342 |
This open access book shows how to use sensitivity analysis in demography. It presents new methods for individuals, cohorts, and populations, with applications to humans, other animals, and plants. The analyses are based on matrix formulations of age-classified, stage-classified, and multistate population models. Methods are presented for linear and nonlinear, deterministic and stochastic, and time-invariant and time-varying cases. Readers will discover results on the sensitivity of statistics of longevity, life disparity, occupancy times, the net reproductive rate, and statistics of Markov chain models in demography. They will also see applications of sensitivity analysis to population growth rates, stable population structures, reproductive value, equilibria under immigration and nonlinearity, and population cycles. Individual stochasticity is a theme throughout, with a focus that goes beyond expected values to include variances in demographic outcomes. The calculations are easily and accurately implemented in matrix-oriented programming languages such as Matlab or R. Sensitivity analysis will help readers create models to predict the effect of future changes, to evaluate policy effects, and to identify possible evolutionary responses to the environment. Complete with many examples of the application, the book will be of interest to researchers and graduate students in human demography and population biology. The material will also appeal to those in mathematical biology and applied mathematics.
Author | : William J. Stewart |
Publisher | : Princeton University Press |
Total Pages | : 561 |
Release | : 1994-12-04 |
Genre | : Mathematics |
ISBN | : 0691036993 |
Markov Chains -- Direct Methods -- Iterative Methods -- Projection Methods -- Block Hessenberg Matrices -- Decompositional Methods -- LI-Cyclic Markov -- Chains -- Transient Solutions -- Stochastic Automata Networks -- Software.
Author | : Sergei Silvestrov |
Publisher | : Springer |
Total Pages | : 437 |
Release | : 2017-02-10 |
Genre | : Computers |
ISBN | : 3319421050 |
This book highlights the latest advances in engineering mathematics with a main focus on the mathematical models, structures, concepts, problems and computational methods and algorithms most relevant for applications in modern technologies and engineering. It addresses mathematical methods of algebra, applied matrix analysis, operator analysis, probability theory and stochastic processes, geometry and computational methods in network analysis, data classification, ranking and optimisation. The individual chapters cover both theory and applications, and include a wealth of figures, schemes, algorithms, tables and results of data analysis and simulation. Presenting new methods and results, reviews of cutting-edge research, and open problems for future research, they equip readers to develop new mathematical methods and concepts of their own, and to further compare and analyse the methods and results discussed. The book consists of contributed chapters covering research developed as a result of a focused international seminar series on mathematics and applied mathematics and a series of three focused international research workshops on engineering mathematics organised by the Research Environment in Mathematics and Applied Mathematics at Mälardalen University from autumn 2014 to autumn 2015: the International Workshop on Engineering Mathematics for Electromagnetics and Health Technology; the International Workshop on Engineering Mathematics, Algebra, Analysis and Electromagnetics; and the 1st Swedish-Estonian International Workshop on Engineering Mathematics, Algebra, Analysis and Applications. It serves as a source of inspiration for a broad spectrum of researchers and research students in applied mathematics, as well as in the areas of applications of mathematics considered in the book.
Author | : Winfried K. Grassmann |
Publisher | : Springer Science & Business Media |
Total Pages | : 488 |
Release | : 2013-03-14 |
Genre | : Business & Economics |
ISBN | : 1475748280 |
Great advances have been made in recent years in the field of computational probability. In particular, the state of the art - as it relates to queuing systems, stochastic Petri-nets and systems dealing with reliability - has benefited significantly from these advances. The objective of this book is to make these topics accessible to researchers, graduate students, and practitioners. Great care was taken to make the exposition as clear as possible. Every line in the book has been evaluated, and changes have been made whenever it was felt that the initial exposition was not clear enough for the intended readership. The work of major research scholars in this field comprises the individual chapters of Computational Probability. The first chapter describes, in nonmathematical terms, the challenges in computational probability. Chapter 2 describes the methodologies available for obtaining the transition matrices for Markov chains, with particular emphasis on stochastic Petri-nets. Chapter 3 discusses how to find transient probabilities and transient rewards for these Markov chains. The next two chapters indicate how to find steady-state probabilities for Markov chains with a finite number of states. Both direct and iterative methods are described in Chapter 4. Details of these methods are given in Chapter 5. Chapters 6 and 7 deal with infinite-state Markov chains, which occur frequently in queueing, because there are times one does not want to set a bound for all queues. Chapter 8 deals with transforms, in particular Laplace transforms. The work of Ward Whitt and his collaborators, who have recently developed a number of numerical methods for Laplace transform inversions, is emphasized in this chapter. Finally, if one wants to optimize a system, one way to do the optimization is through Markov decision making, described in Chapter 9. Markov modeling has found applications in many areas, three of which are described in detail: Chapter 10 analyzes discrete-time queues, Chapter 11 describes networks of queues, and Chapter 12 deals with reliability theory.
Author | : G. Alefeld |
Publisher | : Springer Science & Business Media |
Total Pages | : 253 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3709162173 |
This volume contains eighteen papers submitted in celebration of the sixty-fifth birthday of Professor Tetsuro Yamamoto of Ehime University. Professor Yamamoto was born in Tottori, Japan on January 4, 1937. He obtained his B. S. and M. S. in mathematics from Hiroshima University in 1959 and 1961, respec tively. In 1966, he took a lecturer position in the Department of Mathematics, Faculty of General Education, Hiroshima University and obtained his Ph. D. degree from Hiroshima University two years later. In 1969, he moved to the Department of Applied Mathematics, Faculty of Engineering, Ehime University as an associate professor and he has been a full professor of the Department of Mathematics (now Department of Mathematical Sciences), Faculty of Science, since 1975. At the early stage of his study, he was interested in algebraic eigen value problems and linear iterative methods. He published some papers on these topics in high level international journals. After moving to Ehime University, he started his research on Newton's method and Newton-like methods for nonlinear operator equations. He published many papers on error estimates of the methods. He established the remarkable result that all the known error bounds for Newton's method under the Kantorovich assumptions follow from the Newton-Kantorovich theorem, which put a period to the race of finding sharper error bounds for Newton's method.
Author | : Guy Latouche |
Publisher | : World Scientific |
Total Pages | : 440 |
Release | : 2002 |
Genre | : Fiction |
ISBN | : 9789812777164 |
Matrix-analytic methods are fundamental to the analysis of a family of Markov processes rich in structure and of wide applicability. They are extensively used in the modelling and performance analysis of computer systems, telecommunication networks, network protocols and many other stochastic systems of current commercial and engineering interest.This volume deals with: (1) various aspects of the theory of block-structured Markov chains; (2) analysis of complex queueing models; and (3) parameter estimation and specific applications to such areas as cellular mobile systems, FS-ALOHA, the Internet and production systems.