Lifelong Machine Learning
Download Lifelong Machine Learning full books in PDF, epub, and Kindle. Read online free Lifelong Machine Learning ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Zhiyuan Sun |
Publisher | : Springer Nature |
Total Pages | : 187 |
Release | : 2022-06-01 |
Genre | : Computers |
ISBN | : 3031015819 |
Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past helps us learn new things with little data or effort. Lifelong learning aims to emulate this capability, because without it, an AI system cannot be considered truly intelligent. Research in lifelong learning has developed significantly in the relatively short time since the first edition of this book was published. The purpose of this second edition is to expand the definition of lifelong learning, update the content of several chapters, and add a new chapter about continual learning in deep neural networks—which has been actively researched over the past two or three years. A few chapters have also been reorganized to make each of them more coherent for the reader. Moreover, the authors want to propose a unified framework for the research area. Currently, there are several research topics in machine learning that are closely related to lifelong learning—most notably, multi-task learning, transfer learning, and meta-learning—because they also employ the idea of knowledge sharing and transfer. This book brings all these topics under one roof and discusses their similarities and differences. Its goal is to introduce this emerging machine learning paradigm and present a comprehensive survey and review of the important research results and latest ideas in the area. This book is thus suitable for students, researchers, and practitioners who are interested in machine learning, data mining, natural language processing, or pattern recognition. Lecturers can readily use the book for courses in any of these related fields.
Author | : Zhiyuan Chen |
Publisher | : Morgan & Claypool Publishers |
Total Pages | : 209 |
Release | : 2018-08-14 |
Genre | : Computers |
ISBN | : 168173303X |
Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past helps us learn new things with little data or effort. Lifelong learning aims to emulate this capability, because without it, an AI system cannot be considered truly intelligent. Research in lifelong learning has developed significantly in the relatively short time since the first edition of this book was published. The purpose of this second edition is to expand the definition of lifelong learning, update the content of several chapters, and add a new chapter about continual learning in deep neural networks—which has been actively researched over the past two or three years. A few chapters have also been reorganized to make each of them more coherent for the reader. Moreover, the authors want to propose a unified framework for the research area. Currently, there are several research topics in machine learning that are closely related to lifelong learning—most notably, multi-task learning, transfer learning, and meta-learning—because they also employ the idea of knowledge sharing and transfer. This book brings all these topics under one roof and discusses their similarities and differences. Its goal is to introduce this emerging machine learning paradigm and present a comprehensive survey and review of the important research results and latest ideas in the area. This book is thus suitable for students, researchers, and practitioners who are interested in machine learning, data mining, natural language processing, or pattern recognition. Lecturers can readily use the book for courses in any of these related fields.
Author | : Sebastian Thrun |
Publisher | : Springer Science & Business Media |
Total Pages | : 274 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1461313813 |
Lifelong learning addresses situations in which a learner faces a series of different learning tasks providing the opportunity for synergy among them. Explanation-based neural network learning (EBNN) is a machine learning algorithm that transfers knowledge across multiple learning tasks. When faced with a new learning task, EBNN exploits domain knowledge accumulated in previous learning tasks to guide generalization in the new one. As a result, EBNN generalizes more accurately from less data than comparable methods. Explanation-Based Neural Network Learning: A Lifelong Learning Approach describes the basic EBNN paradigm and investigates it in the context of supervised learning, reinforcement learning, robotics, and chess. `The paradigm of lifelong learning - using earlier learned knowledge to improve subsequent learning - is a promising direction for a new generation of machine learning algorithms. Given the need for more accurate learning methods, it is difficult to imagine a future for machine learning that does not include this paradigm.' From the Foreword by Tom M. Mitchell.
Author | : Zhiyuan Chaudhri |
Publisher | : Springer Nature |
Total Pages | : 137 |
Release | : 2016-11-07 |
Genre | : Computers |
ISBN | : 3031015754 |
Lifelong Machine Learning (or Lifelong Learning) is an advanced machine learning paradigm that learns continuously, accumulates the knowledge learned in previous tasks, and uses it to help future learning. In the process, the learner becomes more and more knowledgeable and effective at learning. This learning ability is one of the hallmarks of human intelligence. However, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model. It makes no attempt to retain the learned knowledge and use it in future learning. Although this isolated learning paradigm has been very successful, it requires a large number of training examples, and is only suitable for well-defined and narrow tasks. In comparison, we humans can learn effectively with a few examples because we have accumulated so much knowledge in the past which enables us to learn with little data or effort. Lifelong learning aims to achieve this capability. As statistical machine learning matures, it is time to make a major effort to break the isolated learning tradition and to study lifelong learning to bring machine learning to new heights. Applications such as intelligent assistants, chatbots, and physical robots that interact with humans and systems in real-life environments are also calling for such lifelong learning capabilities. Without the ability to accumulate the learned knowledge and use it to learn more knowledge incrementally, a system will probably never be truly intelligent. This book serves as an introductory text and survey to lifelong learning.
Author | : Sebastian Thrun |
Publisher | : Springer Science & Business Media |
Total Pages | : 346 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1461555299 |
Over the past three decades or so, research on machine learning and data mining has led to a wide variety of algorithms that learn general functions from experience. As machine learning is maturing, it has begun to make the successful transition from academic research to various practical applications. Generic techniques such as decision trees and artificial neural networks, for example, are now being used in various commercial and industrial applications. Learning to Learn is an exciting new research direction within machine learning. Similar to traditional machine-learning algorithms, the methods described in Learning to Learn induce general functions from experience. However, the book investigates algorithms that can change the way they generalize, i.e., practice the task of learning itself, and improve on it. To illustrate the utility of learning to learn, it is worthwhile comparing machine learning with human learning. Humans encounter a continual stream of learning tasks. They do not just learn concepts or motor skills, they also learn bias, i.e., they learn how to generalize. As a result, humans are often able to generalize correctly from extremely few examples - often just a single example suffices to teach us a new thing. A deeper understanding of computer programs that improve their ability to learn can have a large practical impact on the field of machine learning and beyond. In recent years, the field has made significant progress towards a theory of learning to learn along with practical new algorithms, some of which led to impressive results in real-world applications. Learning to Learn provides a survey of some of the most exciting new research approaches, written by leading researchers in the field. Its objective is to investigate the utility and feasibility of computer programs that can learn how to learn, both from a practical and a theoretical point of view.
Author | : Yuxi (Hayden) Liu |
Publisher | : Packt Publishing Ltd |
Total Pages | : 334 |
Release | : 2019-10-31 |
Genre | : Computers |
ISBN | : 1838553231 |
Implement reinforcement learning techniques and algorithms with the help of real-world examples and recipes Key FeaturesUse PyTorch 1.x to design and build self-learning artificial intelligence (AI) modelsImplement RL algorithms to solve control and optimization challenges faced by data scientists todayApply modern RL libraries to simulate a controlled environment for your projectsBook Description Reinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has also emerged as the preferred tool for training RL models because of its efficiency and ease of use. With this book, you'll explore the important RL concepts and the implementation of algorithms in PyTorch 1.x. The recipes in the book, along with real-world examples, will help you master various RL techniques, such as dynamic programming, Monte Carlo simulations, temporal difference, and Q-learning. You'll also gain insights into industry-specific applications of these techniques. Later chapters will guide you through solving problems such as the multi-armed bandit problem and the cartpole problem using the multi-armed bandit algorithm and function approximation. You'll also learn how to use Deep Q-Networks to complete Atari games, along with how to effectively implement policy gradients. Finally, you'll discover how RL techniques are applied to Blackjack, Gridworld environments, internet advertising, and the Flappy Bird game. By the end of this book, you'll have developed the skills you need to implement popular RL algorithms and use RL techniques to solve real-world problems. What you will learnUse Q-learning and the state–action–reward–state–action (SARSA) algorithm to solve various Gridworld problemsDevelop a multi-armed bandit algorithm to optimize display advertisingScale up learning and control processes using Deep Q-NetworksSimulate Markov Decision Processes, OpenAI Gym environments, and other common control problemsSelect and build RL models, evaluate their performance, and optimize and deploy themUse policy gradient methods to solve continuous RL problemsWho this book is for Machine learning engineers, data scientists and AI researchers looking for quick solutions to different reinforcement learning problems will find this book useful. Although prior knowledge of machine learning concepts is required, experience with PyTorch will be useful but not necessary.
Author | : Mitchel Resnick |
Publisher | : MIT Press |
Total Pages | : 203 |
Release | : 2018-08-28 |
Genre | : Education |
ISBN | : 0262536137 |
How lessons from kindergarten can help everyone develop the creative thinking skills needed to thrive in today's society. In kindergartens these days, children spend more time with math worksheets and phonics flashcards than building blocks and finger paint. Kindergarten is becoming more like the rest of school. In Lifelong Kindergarten, learning expert Mitchel Resnick argues for exactly the opposite: the rest of school (even the rest of life) should be more like kindergarten. To thrive in today's fast-changing world, people of all ages must learn to think and act creatively—and the best way to do that is by focusing more on imagining, creating, playing, sharing, and reflecting, just as children do in traditional kindergartens. Drawing on experiences from more than thirty years at MIT's Media Lab, Resnick discusses new technologies and strategies for engaging young people in creative learning experiences. He tells stories of how children are programming their own games, stories, and inventions (for example, a diary security system, created by a twelve-year-old girl), and collaborating through remixing, crowdsourcing, and large-scale group projects (such as a Halloween-themed game called Night at Dreary Castle, produced by more than twenty kids scattered around the world). By providing young people with opportunities to work on projects, based on their passions, in collaboration with peers, in a playful spirit, we can help them prepare for a world where creative thinking is more important than ever before.
Author | : Cao Xiao |
Publisher | : Springer Nature |
Total Pages | : 236 |
Release | : 2021-11-11 |
Genre | : Medical |
ISBN | : 3030821846 |
This textbook presents deep learning models and their healthcare applications. It focuses on rich health data and deep learning models that can effectively model health data. Healthcare data: Among all healthcare technologies, electronic health records (EHRs) had vast adoption and a significant impact on healthcare delivery in recent years. One crucial benefit of EHRs is to capture all the patient encounters with rich multi-modality data. Healthcare data include both structured and unstructured information. Structured data include various medical codes for diagnoses and procedures, lab results, and medication information. Unstructured data contain 1) clinical notes as text, 2) medical imaging data such as X-rays, echocardiogram, and magnetic resonance imaging (MRI), and 3) time-series data such as the electrocardiogram (ECG) and electroencephalogram (EEG). Beyond the data collected during clinical visits, patient self-generated/reported data start to grow thanks to wearable sensors’ increasing use. The authors present deep learning case studies on all data described. Deep learning models: Neural network models are a class of machine learning methods with a long history. Deep learning models are neural networks of many layers, which can extract multiple levels of features from raw data. Deep learning applied to healthcare is a natural and promising direction with many initial successes. The authors cover deep neural networks, convolutional neural networks, recurrent neural networks, embedding methods, autoencoders, attention models, graph neural networks, memory networks, and generative models. It’s presented with concrete healthcare case studies such as clinical predictive modeling, readmission prediction, phenotyping, x-ray classification, ECG diagnosis, sleep monitoring, automatic diagnosis coding from clinical notes, automatic deidentification, medication recommendation, drug discovery (drug property prediction and molecule generation), and clinical trial matching. This textbook targets graduate-level students focused on deep learning methods and their healthcare applications. It can be used for the concepts of deep learning and its applications as well. Researchers working in this field will also find this book to be extremely useful and valuable for their research.
Author | : Christopher Dede |
Publisher | : Routledge |
Total Pages | : 192 |
Release | : 2020-03-31 |
Genre | : Education |
ISBN | : 1000050297 |
The 60-Year Curriculum explores models and strategies for lifelong learning in an era of profound economic disruption and reinvention. Over the next half-century, globalization, regional threats to sustainability, climate change, and technologies such as artificial intelligence and data mining will transform our education and workforce sectors. In turn, higher education must shift to offer every student life-wide opportunities for the continuous upskilling they will need to achieve decades of worthwhile employability. This cutting-edge book describes the evolution of new models—covering computer science, inclusive design, critical thinking, civics, and more—by which universities can increase learners’ trajectories across multiple careers from mid-adolescence to retirement. Stakeholders in workforce development, curriculum and instructional design, lifelong learning, and higher and continuing education will find a unique synthesis offering valuable insights and actionable next steps.
Author | : Céline Jost |
Publisher | : Springer Nature |
Total Pages | : 418 |
Release | : 2020-05-13 |
Genre | : Social Science |
ISBN | : 3030423077 |
This book offers the first comprehensive yet critical overview of methods used to evaluate interaction between humans and social robots. It reviews commonly used evaluation methods, and shows that they are not always suitable for this purpose. Using representative case studies, the book identifies good and bad practices for evaluating human-robot interactions and proposes new standardized processes as well as recommendations, carefully developed on the basis of intensive discussions between specialists in various HRI-related disciplines, e.g. psychology, ethology, ergonomics, sociology, ethnography, robotics, and computer science. The book is the result of a close, long-standing collaboration between the editors and the invited contributors, including, but not limited to, their inspiring discussions at the workshop on Evaluation Methods Standardization for Human-Robot Interaction (EMSHRI), which have been organized yearly since 2015. By highlighting and weighing good and bad practices in evaluation design for HRI, the book will stimulate the scientific community to search for better solutions, take advantages of interdisciplinary collaborations, and encourage the development of new standards to accommodate the growing presence of robots in the day-to-day and social lives of human beings.