Lie Groups And Lie Algebras For Physicists
Download Lie Groups And Lie Algebras For Physicists full books in PDF, epub, and Kindle. Read online free Lie Groups And Lie Algebras For Physicists ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Robert Gilmore |
Publisher | : Cambridge University Press |
Total Pages | : 5 |
Release | : 2008-01-17 |
Genre | : Science |
ISBN | : 113946907X |
Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.
Author | : Ashok Das |
Publisher | : |
Total Pages | : 0 |
Release | : 2014 |
Genre | : Group theory |
ISBN | : 9789814603270 |
The book is intended for graduate students of theoretical physics (with a background in quantum mechanics) as well as researchers interested in applications of Lie group theory and Lie algebras in physics. The emphasis is on the inter-relations of representation theories of Lie groups and the corresponding Lie algebras.
Author | : D.H. Sattinger |
Publisher | : Springer Science & Business Media |
Total Pages | : 218 |
Release | : 2013-11-11 |
Genre | : Mathematics |
ISBN | : 1475719108 |
This book is intended as an introductory text on the subject of Lie groups and algebras and their role in various fields of mathematics and physics. It is written by and for researchers who are primarily analysts or physicists, not algebraists or geometers. Not that we have eschewed the algebraic and geo metric developments. But we wanted to present them in a concrete way and to show how the subject interacted with physics, geometry, and mechanics. These interactions are, of course, manifold; we have discussed many of them here-in particular, Riemannian geometry, elementary particle physics, sym metries of differential equations, completely integrable Hamiltonian systems, and spontaneous symmetry breaking. Much ofthe material we have treated is standard and widely available; but we have tried to steer a course between the descriptive approach such as found in Gilmore and Wybourne, and the abstract mathematical approach of Helgason or Jacobson. Gilmore and Wybourne address themselves to the physics community whereas Helgason and Jacobson address themselves to the mathematical community. This book is an attempt to synthesize the two points of view and address both audiences simultaneously. We wanted to present the subject in a way which is at once intuitive, geometric, applications oriented, mathematically rigorous, and accessible to students and researchers without an extensive background in physics, algebra, or geometry.
Author | : Adam M. Bincer |
Publisher | : Oxford University Press |
Total Pages | : 216 |
Release | : 2013 |
Genre | : Mathematics |
ISBN | : 0199662924 |
This book is intended for graduate students in Physics. It starts with a discussion of angular momentum and rotations in terms of the orthogonal group in three dimensions and the unitary group in two dimensions and goes on to deal with these groups in any dimensions. All representations of su(2) are obtained and the Wigner-Eckart theorem is discussed. Casimir operators for the orthogonal and unitary groups are discussed. The exceptional group G2 is introduced as the group of automorphisms of octonions. The symmetric group is used to deal with representations of the unitary groups and the reduction of their Kronecker products. Following the presentation of Cartan's classification of semisimple algebras Dynkin diagrams are described. The book concludes with space-time groups - the Lorentz, Poincare and Liouville groups - and a derivation of the energy levels of the non-relativistic hydrogen atom in n space dimensions.
Author | : Howard Georgi |
Publisher | : Westview Press |
Total Pages | : 340 |
Release | : 1999-10-22 |
Genre | : Science |
ISBN | : 0738202339 |
An exciting new edition of a classic text
Author | : Robert Gilmore |
Publisher | : Courier Corporation |
Total Pages | : 610 |
Release | : 2012-05-23 |
Genre | : Mathematics |
ISBN | : 0486131564 |
This text introduces upper-level undergraduates to Lie group theory and physical applications. It further illustrates Lie group theory's role in several fields of physics. 1974 edition. Includes 75 figures and 17 tables, exercises and problems.
Author | : Josi A. de Azcárraga |
Publisher | : Cambridge University Press |
Total Pages | : 480 |
Release | : 1998-08-06 |
Genre | : Mathematics |
ISBN | : 9780521597005 |
A self-contained introduction to the cohomology theory of Lie groups and some of its applications in physics.
Author | : John Stillwell |
Publisher | : Springer Science & Business Media |
Total Pages | : 230 |
Release | : 2008-12-15 |
Genre | : Mathematics |
ISBN | : 038778215X |
In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).
Author | : Marián Fecko |
Publisher | : Cambridge University Press |
Total Pages | : 11 |
Release | : 2006-10-12 |
Genre | : Science |
ISBN | : 1139458035 |
Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering.
Author | : Howard Georgi |
Publisher | : CRC Press |
Total Pages | : 340 |
Release | : 2018-05-04 |
Genre | : Science |
ISBN | : 0429967764 |
In this book, the author convinces that Sir Arthur Stanley Eddington had things a little bit wrong, as least as far as physics is concerned. He explores the theory of groups and Lie algebras and their representations to use group representations as labor-saving tools.