Lie Algebras Of Bounded Operators
Download Lie Algebras Of Bounded Operators full books in PDF, epub, and Kindle. Read online free Lie Algebras Of Bounded Operators ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Daniel Beltita |
Publisher | : Birkhäuser |
Total Pages | : 226 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3034883323 |
In several proofs from the theory of finite-dimensional Lie algebras, an essential contribution comes from the Jordan canonical structure of linear maps acting on finite-dimensional vector spaces. On the other hand, there exist classical results concerning Lie algebras which advise us to use infinite-dimensional vector spaces as well. For example, the classical Lie Theorem asserts that all finite-dimensional irreducible representations of solvable Lie algebras are one-dimensional. Hence, from this point of view, the solvable Lie algebras cannot be distinguished from one another, that is, they cannot be classified. Even this example alone urges the infinite-dimensional vector spaces to appear on the stage. But the structure of linear maps on such a space is too little understood; for these linear maps one cannot speak about something like the Jordan canonical structure of matrices. Fortunately there exists a large class of linear maps on vector spaces of arbi trary dimension, having some common features with the matrices. We mean the bounded linear operators on a complex Banach space. Certain types of bounded operators (such as the Dunford spectral, Foia§ decomposable, scalar generalized or Colojoara spectral generalized operators) actually even enjoy a kind of Jordan decomposition theorem. One of the aims of the present book is to expound the most important results obtained until now by using bounded operators in the study of Lie algebras.
Author | : K. Schmüdgen |
Publisher | : Birkhäuser |
Total Pages | : 381 |
Release | : 2013-11-11 |
Genre | : Mathematics |
ISBN | : 3034874693 |
*-algebras of unbounded operators in Hilbert space, or more generally algebraic systems of unbounded operators, occur in a natural way in unitary representation theory of Lie groups and in the Wightman formulation of quantum field theory. In representation theory they appear as the images of the associated representations of the Lie algebras or of the enveloping algebras on the Garding domain and in quantum field theory they occur as the vector space of field operators or the *-algebra generated by them. Some of the basic tools for the general theory were first introduced and used in these fields. For instance, the notion of the weak (bounded) commutant which plays a fundamental role in thegeneraltheory had already appeared in quantum field theory early in the six ties. Nevertheless, a systematic study of unbounded operator algebras began only at the beginning of the seventies. It was initiated by (in alphabetic order) BORCHERS, LASSNER, POWERS, UHLMANN and VASILIEV. J1'rom the very beginning, and still today, represen tation theory of Lie groups and Lie algebras and quantum field theory have been primary sources of motivation and also of examples. However, the general theory of unbounded operator algebras has also had points of contact with several other disciplines. In particu lar, the theory of locally convex spaces, the theory of von Neumann algebras, distri bution theory, single operator theory, the momcnt problem and its non-commutative generalizations and noncommutative probability theory, all have interacted with our subject.
Author | : Daniel Beltita |
Publisher | : Springer Science & Business Media |
Total Pages | : 240 |
Release | : 2001-04-01 |
Genre | : Mathematics |
ISBN | : 9783764364045 |
In several proofs from the theory of finite-dimensional Lie algebras, an essential contribution comes from the Jordan canonical structure of linear maps acting on finite-dimensional vector spaces. On the other hand, there exist classical results concerning Lie algebras which advise us to use infinite-dimensional vector spaces as well. For example, the classical Lie Theorem asserts that all finite-dimensional irreducible representations of solvable Lie algebras are one-dimensional. Hence, from this point of view, the solvable Lie algebras cannot be distinguished from one another, that is, they cannot be classified. Even this example alone urges the infinite-dimensional vector spaces to appear on the stage. But the structure of linear maps on such a space is too little understood; for these linear maps one cannot speak about something like the Jordan canonical structure of matrices. Fortunately there exists a large class of linear maps on vector spaces of arbi trary dimension, having some common features with the matrices. We mean the bounded linear operators on a complex Banach space. Certain types of bounded operators (such as the Dunford spectral, Foia§ decomposable, scalar generalized or Colojoara spectral generalized operators) actually even enjoy a kind of Jordan decomposition theorem. One of the aims of the present book is to expound the most important results obtained until now by using bounded operators in the study of Lie algebras.
Author | : P. de la Harpe |
Publisher | : Springer |
Total Pages | : 164 |
Release | : 2006-11-14 |
Genre | : Mathematics |
ISBN | : 3540379703 |
Author | : Alexander A. Kirillov |
Publisher | : Cambridge University Press |
Total Pages | : 237 |
Release | : 2008-07-31 |
Genre | : Mathematics |
ISBN | : 0521889693 |
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.
Author | : Vern Paulsen |
Publisher | : Cambridge University Press |
Total Pages | : 316 |
Release | : 2002 |
Genre | : Mathematics |
ISBN | : 9780521816694 |
In this book, first published in 2003, the reader is provided with a tour of the principal results and ideas in the theories of completely positive maps, completely bounded maps, dilation theory, operator spaces and operator algebras, together with some of their main applications. The author assumes only that the reader has a basic background in functional analysis, and the presentation is self-contained and paced appropriately for graduate students new to the subject. Experts will also want this book for their library since the author illustrates the power of methods he has developed with new and simpler proofs of some of the major results in the area, many of which have not appeared earlier in the literature. An indispensable introduction to the theory of operator spaces for all who want to know more.
Author | : Audrey Terras |
Publisher | : Springer Science & Business Media |
Total Pages | : 430 |
Release | : 2013-09-12 |
Genre | : Mathematics |
ISBN | : 146147972X |
This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincaré upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering. Many corrections and updates have been incorporated in this new edition. Updates include discussions of P. Sarnak and others' work on quantum chaos, the work of T. Sunada, Marie-France Vignéras, Carolyn Gordon, and others on Mark Kac's question "Can you hear the shape of a drum?", A. Lubotzky, R. Phillips and P. Sarnak's examples of Ramanujan graphs, and, finally, the author's comparisons of continuous theory with the finite analogues. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, Poisson's summation formula and applications in crystallography and number theory, applications of spherical harmonic analysis to the hydrogen atom, the Radon transform, non-Euclidean geometry on the Poincaré upper half plane H or unit disc and applications to microwave engineering, fundamental domains in H for discrete groups Γ, tessellations of H from such discrete group actions, automorphic forms, and the Selberg trace formula and its applications in spectral theory as well as number theory.
Author | : K. Erdmann |
Publisher | : Springer Science & Business Media |
Total Pages | : 254 |
Release | : 2006-09-28 |
Genre | : Mathematics |
ISBN | : 1846284902 |
Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.
Author | : Kalle Åström |
Publisher | : Springer Science & Business Media |
Total Pages | : 355 |
Release | : 2012-01-05 |
Genre | : Mathematics |
ISBN | : 3642202365 |
This book project was initiated at The Tribute Workshop in Honour of Gunnar Sparr and the follow-up workshop Inequalities, Interpolation, Non-commutative, Analysis, Non-commutative Geometry and Applications INANGA08, held at the Centre for Mathematical Sciences, Lund University in May and November of 2008. The resulting book is dedicated in celebration of Gunnar Sparr's sixty-fifth anniversary and more than forty years of exceptional service to mathematics and its applications in engineering and technology, mathematics and engineering education, as well as interdisciplinary, industrial and international cooperation. This book presents new advances in several areas of mathematics and engineering mathematics including applications in modern technology, engineering and life sciences. Thirteen high-quality chapters put forward many new methods and results, reviews of up to date research and open directions and problems for future research. A special chapter by Gunnar Sparr and Georg Lindgren contains a historical account and important aspects of engineering mathematics research and education, and the implementation of the highly successful education programme in Engineering Mathematics at Lund Institute of Technology, where not only the mathematical sciences have played a role. This book will serve as a source of inspiration for a broad spectrum of researchers and research students.
Author | : Asim Orhan Barut |
Publisher | : World Scientific |
Total Pages | : 750 |
Release | : 1986 |
Genre | : Mathematics |
ISBN | : 9789971502171 |
Lie!algebras - Topological!groups - Lie!groups - Representations - Special!functions - Induced!representations.