Lie Algebraic Methods in Integrable Systems

Lie Algebraic Methods in Integrable Systems
Author: Amit K. Roy-Chowdhury
Publisher: CRC Press
Total Pages: 372
Release: 2021-01-04
Genre: Mathematics
ISBN: 1000153339

Over the last thirty years, the subject of nonlinear integrable systems has grown into a full-fledged research topic. In the last decade, Lie algebraic methods have grown in importance to various fields of theoretical research and worked to establish close relations between apparently unrelated systems. The various ideas associated with Lie algebra and Lie groups can be used to form a particularly elegant approach to the properties of nonlinear systems. In this volume, the author exposes the basic techniques of using Lie algebraic concepts to explore the domain of nonlinear integrable systems. His emphasis is not on developing a rigorous mathematical basis, but on using Lie algebraic methods as an effective tool. The book begins by establishing a practical basis in Lie algebra, including discussions of structure Lie, loop, and Virasor groups, quantum tori and Kac-Moody algebras, and gradation. It then offers a detailed discussion of prolongation structure and its representation theory, the orbit approach-for both finite and infinite dimension Lie algebra. The author also presents the modern approach to symmetries of integrable systems, including important new ideas in symmetry analysis, such as gauge transformations, and the "soldering" approach. He then moves to Hamiltonian structure, where he presents the Drinfeld-Sokolov approach, the Lie algebraic approach, Kupershmidt's approach, Hamiltonian reductions and the Gelfand Dikii formula. He concludes his treatment of Lie algebraic methods with a discussion of the classical r-matrix, its use, and its relations to double Lie algebra and the KP equation.

Lie Algebraic Methods in Integrable Systems

Lie Algebraic Methods in Integrable Systems
Author: Amit K. Roy-Chowdhury
Publisher: CRC Press
Total Pages: 372
Release: 1999-09-28
Genre: Mathematics
ISBN: 9781584880370

Over the last thirty years, the subject of nonlinear integrable systems has grown into a full-fledged research topic. In the last decade, Lie algebraic methods have grown in importance to various fields of theoretical research and worked to establish close relations between apparently unrelated systems. The various ideas associated with Lie algebra and Lie groups can be used to form a particularly elegant approach to the properties of nonlinear systems. In this volume, the author exposes the basic techniques of using Lie algebraic concepts to explore the domain of nonlinear integrable systems. His emphasis is not on developing a rigorous mathematical basis, but on using Lie algebraic methods as an effective tool. The book begins by establishing a practical basis in Lie algebra, including discussions of structure Lie, loop, and Virasor groups, quantum tori and Kac-Moody algebras, and gradation. It then offers a detailed discussion of prolongation structure and its representation theory, the orbit approach-for both finite and infinite dimension Lie algebra. The author also presents the modern approach to symmetries of integrable systems, including important new ideas in symmetry analysis, such as gauge transformations, and the "soldering" approach. He then moves to Hamiltonian structure, where he presents the Drinfeld-Sokolov approach, the Lie algebraic approach, Kupershmidt's approach, Hamiltonian reductions and the Gelfand Dikii formula. He concludes his treatment of Lie algebraic methods with a discussion of the classical r-matrix, its use, and its relations to double Lie algebra and the KP equation.

Algebraic Integrability, Painlevé Geometry and Lie Algebras

Algebraic Integrability, Painlevé Geometry and Lie Algebras
Author: Mark Adler
Publisher: Springer Science & Business Media
Total Pages: 487
Release: 2013-03-14
Genre: Mathematics
ISBN: 366205650X

This Ergebnisse volume is aimed at a wide readership of mathematicians and physicists, graduate students and professionals. The main thrust of the book is to show how algebraic geometry, Lie theory and Painlevé analysis can be used to explicitly solve integrable differential equations and construct the algebraic tori on which they linearize; at the same time, it is, for the student, a playing ground to applying algebraic geometry and Lie theory. The book is meant to be reasonably self-contained and presents numerous examples. The latter appear throughout the text to illustrate the ideas, and make up the core of the last part of the book. The first part of the book contains the basic tools from Lie groups, algebraic and differential geometry to understand the main topic.

Applications of Lie Groups to Differential Equations

Applications of Lie Groups to Differential Equations
Author: Peter J. Olver
Publisher: Springer Science & Business Media
Total Pages: 524
Release: 2012-12-06
Genre: Mathematics
ISBN: 1468402749

This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.

Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds

Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds
Author: A.K. Prykarpatsky
Publisher: Springer
Total Pages: 559
Release: 2012-10-10
Genre: Science
ISBN: 9789401060967

In recent times it has been stated that many dynamical systems of classical mathematical physics and mechanics are endowed with symplectic structures, given in the majority of cases by Poisson brackets. Very often such Poisson structures on corresponding manifolds are canonical, which gives rise to the possibility of producing their hidden group theoretical essence for many completely integrable dynamical systems. It is a well understood fact that great part of comprehensive integrability theories of nonlinear dynamical systems on manifolds is based on Lie-algebraic ideas, by means of which, in particular, the classification of such compatibly bi Hamiltonian and isospectrally Lax type integrable systems has been carried out. Many chapters of this book are devoted to their description, but to our regret so far the work has not been completed. Hereby our main goal in each analysed case consists in separating the basic algebraic essence responsible for the complete integrability, and which is, at the same time, in some sense universal, i. e. , characteristic for all of them. Integrability analysis in the framework of a gradient-holonomic algorithm, devised in this book, is fulfilled through three stages: 1) finding a symplectic structure (Poisson bracket) transforming an original dynamical system into a Hamiltonian form; 2) finding first integrals (action variables or conservation laws); 3) defining an additional set of variables and some functional operator quantities with completely controlled evolutions (for instance, as Lax type representation).

Integrable Systems of Classical Mechanics and Lie Algebras Volume I

Integrable Systems of Classical Mechanics and Lie Algebras Volume I
Author: PERELOMOV
Publisher: Birkhäuser
Total Pages: 312
Release: 2012-12-06
Genre: Science
ISBN: 3034892578

This book offers a systematic presentation of a variety of methods and results concerning integrable systems of classical mechanics. The investigation of integrable systems was an important line of study in the last century, but up until recently only a small number of examples with two or more degrees of freedom were known. In the last fifteen years however, remarkable progress has been made in this field via the so-called isospectral deformation method which makes extensive use of group-theoretical concepts. The book focuses mainly on the development and applications of this new method, and also gives a fairly complete survey of the older classic results. Chapter 1 contains the necessary background material and outlines the isospectral deformation method in a Lie-algebraic form. Chapter 2 gives an account of numerous previously known integrable systems. Chapter 3 deals with many-body systems of generalized Calogero-Moser type, related to root systems of simple Lie algebras. Chapter 4 is devoted to the Toda lattice and its various modifications seen from the group-theoretic point of view. Chapter 5 investigates some additional topics related to many-body systems. The book will be valuable to students as well as researchers.

Introduction to Classical Integrable Systems

Introduction to Classical Integrable Systems
Author: Olivier Babelon
Publisher: Cambridge University Press
Total Pages: 622
Release: 2003-04-17
Genre: Mathematics
ISBN: 9780521822671

This book provides a thorough introduction to the theory of classical integrable systems, discussing the various approaches to the subject and explaining their interrelations. The book begins by introducing the central ideas of the theory of integrable systems, based on Lax representations, loop groups and Riemann surfaces. These ideas are then illustrated with detailed studies of model systems. The connection between isomonodromic deformation and integrability is discussed, and integrable field theories are covered in detail. The KP, KdV and Toda hierarchies are explained using the notion of Grassmannian, vertex operators and pseudo-differential operators. A chapter is devoted to the inverse scattering method and three complementary chapters cover the necessary mathematical tools from symplectic geometry, Riemann surfaces and Lie algebras. The book contains many worked examples and is suitable for use as a textbook on graduate courses. It also provides a comprehensive reference for researchers already working in the field.

Lie Algebras, Geometry, and Toda-Type Systems

Lie Algebras, Geometry, and Toda-Type Systems
Author: Alexander Vitalievich Razumov
Publisher: Cambridge University Press
Total Pages: 271
Release: 1997-05-15
Genre: Mathematics
ISBN: 0521479231

The book describes integrable Toda type systems and their Lie algebra and differential geometry background.

An Introduction to Lie Groups and Lie Algebras

An Introduction to Lie Groups and Lie Algebras
Author: Alexander A. Kirillov
Publisher: Cambridge University Press
Total Pages: 237
Release: 2008-07-31
Genre: Mathematics
ISBN: 0521889693

This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.